A Cost Comparison Between Standard Plan A and P-1100 Retrofits.

This study is a cost comparison between the Standard Plan A design system and the FEMA P-1100 design system. See Appendix A for Standard Plan A calculations.

The following pages contain tabulated price and design comparisons between the two design systems when applied to the exact same house i.e. the weight classification, square footage, seismic design category and the number of stories are exactly the same.

The pricing per piece of hardware and per linear foot of plywood shown below is based on Bay Area Retrofit's current price schedule.

Pricing	
5/8" Bolts	\$77 each
Type A Connector URFP	\$135 each
Type B Connector FRFP	\$135 each
12" Rip Cut Shim	\$50 each
24" Cross Cut Shim	\$90 each
48" Rip Cut Runner	\$175 each
Type E Connector (L90)	\$39 each
Plywood < 4 feet	\$90 plf
Plywood > 4 feet	\$165 plf
Tie Downs	\$215 each

Rip cut shims are shims that cut parallel to the grain. Cross cut shims are cut perpendicular to the grain. Rip cut shims are much more labor intensive which is why they cost more. A 48" rip cut runner is a 48" shim that is part of Detail 3, Sheet D2.

Hardware and plywood capacities are rated according to the SDPWS, NDS, and the Simpson StrongTie catalog.

Capacities	
5/8" Bolts in 2" Close Grain Redwood	1400#
Type A Connector (URFP)	1530#
Type B Connector (FRFP)	960#
Type E Connector (L90)	925#
Light Construction Rated Plywood	380plf
Medium Construction Rated Plywood	490plf
Standard Plan A 3" o.c. Structural 1 Plywood	550plf
Heavy Construction Rated Plywood	640plf

Seismic Design Coefficient in Standard Plan A is 0.186.

All house weights derived from Standard Plan A Calculations. See Appendix B

P-1100 Seismic Design Coefficient for mudsill connectors and framing anchors = 0.393 ((0.562 x .7)

Seismic Design Coefficient in P-1100 for plywood = $0.262 (0.375 \times 0.7)$

The Bay Area's Housing Stock.

EARTHQUAKE RETROFIT SCHEDUL						L			
		es			Lengt	h Each of Along	Two Brac Each Per	ed Wall S imeter Wa	e al
tegory		nat applie	Wood Structural Pan			el			
ht Ca		ow t			Crip	ple Wall I	Height		
/eigl		ark	up to 1'	1'-1" to 2'	2'-1" t	o 4'-0"	4'-1" t	o 6'-0"	Γ
M	Total Area in Square Feet	W X	Without Tie- downs	Without Tie- downs	Without Tie- downs	With Tie- downs	Without Tie- downs	With Tie- downs	
	up to 800		8.0'	8.0'	10.7"	8.0'	12.0'	8.0'	Γ
Ę	801 to 1000		9.3'	9.3'	12.0'	9.3'	13.3'	9.3'	Γ
y ructio	1001 to 1200		10.7'	10.7'	13.3'	10.7'	16.0'	10.7'	Γ
-Stor	1201 to 1500		12.0'	12.0'	14.7	12.0'	17.3'	12.0'	Γ
ght C	1501 to 2000		14.7'	14.7'	17.3'	14.7'	21.3'	16.0'	Γ
Ľ.	2001 to 2500		18.7'	18.7	20.0'	18.7"	24.0'	18.7'	[
	2501 to 3000		21.3'	21.3'	22.7	21.3'	26.7'	21.3'	
									т.

The cripple wall of this home appears to be slightly less than 4 feet tall. Applying P-1100's earthquake retrofit schedule, 29' 3" (without tie downs) or 24' (with tie downs) of shear walling is required. There is not enough available foundation to do this. This is one of the problems with FEMA P-1100. (Remember TWO lengths of structural panel are required on each will line)

The Comparison Process

In the following pages the FEMA P-1100 applications are identified by "P-1100" at the beginning of the house description.

Standard Plan A retrofits are identified by "Standard Plan A" at the beginning of the house description.

P-1100 - 1,350sf - One Story - 2' Cripple Wall - Light Construction

Shear resistance on each wall line.

5/8 Bolts- 1500#	18,000# each wall line
Plywood-380plf	9,120# each wall
L90s - 925#	23,125# each line

Standard Plan A - 1,350sf - One Story - 2' Cripple Wall - Light Construction

Base shear = 4260#on each wall line.

Component Capacities	Shear resistance on each wall line
5/8 Bolts- 1500#	6,000# each wall line
Plywood-550plf	5500# each wall line
L90s - 925#	4,625# each wall line

.

•

P-1100 - 1,350sf - One Story - 2' Cripple Wall - Light Construction - <u>\$16,080.00</u>

Component Capacities	Shear resistance on each wall line
5/8 Bolts- 1500#	18,000# each wall line
Plywood-380plf	9,120# each wall
L90s - 925#	23,125# each line

Standard Plan A - 1,350sf - One Story - 2' Cripple Wall - Light Construction- \$5,622.00

Base shear = 4260#on each wall line

Component Capacities	Shear resistance on each wall line
5/8 Bolts- 1500#	6,000# each wall line
Plywood-550plf	5500# each wall line
L90s - 925#	4,625# each wall line

Item	P-1100	SPA	P-1100	SPA	P-1100	SPA	P-1100	SPA
Bolts	48	16					\$3696	\$1232
Plywood			96 lf	48lf			\$8640	\$4320
L90s					100	20	\$3900	\$780
Total Cost	Į						\$16,080	\$5,622
V=								0.186 W

P-1100 - 1,350 One Story - 2' Cripple Wall - Medium Construction

5/8 Bolts - 1500#	22,500# each wall line
Plywood - 490plf	11,760# each wall line
L90 – 925#	26,825# each wall line

Standard Plan A - 1350sf - One Story - 2' Cripple Wall - Medium Construction

Base shear = 5649#on each wall line.

Component Capacities	Shear resistance on each wall line
Bolts- 1500#	6,000# each wall line
Plywood-550plf	6600# each wall line
L90s - 925#	6475# each wall line

P-1100 - 1,350 One Story - 2' Cripple Wall - Medium Constructions - \$17,784.00

Component Capacities	Shear resistance on each wall line
5/8 Bolts – 1500#	22,500# each wall line
Plywood - 490plf	11,760# each wall line
L90 – 925#	26,825# each wall line

Standard Plan A – 1350sf - One Story - 2' Cripple Wall - Medium Construction \$7,124.00

Base shear = 5649 #on ea	ch wall line.
----------------------------	---------------

Component Capacities	Shear resistance on each wall line
Bolts- 1500#	6,000# each wall line
Plywood-550plf	6600# each wall line
L90s - 925#	6475# each wall line

•

Item	P-1100	SPA	P-1100	SPA	P-1100	SPA	P-1100	SPA
Bolts	60	16					\$4620	\$1540
Plywood			96 lf	48lf			\$8640	\$4800
L90s					116	28	\$4524	\$1092
Total Cost	t						\$17,784	\$7,124
V=								0.186W

P-1100 - 1,350sf - One Story - 2'Cripple Wall - Heavy Construction

Component	Shear resistance on each wall line
5/8 Bolts	24,000# each wall line
640 plf Plywood	16,640# each wall line
L90s	31,912# each wall line

.

Standard Plan A - 1,350sf - One Story - 2' Cripple Wall - Heavy Construction

Base shear = 6277#on each wall line.

Component Capacities	Shear resistance on each wall line
5/8 Bolts- 1500#	7,500# each wall line
Plywood-550plf	6600# each wall line
L90s - 925#	6475# each wall line

.

P-1100 - 1,350sf - One Story - 2'Cripple Wall - Heavy Construction <u>\$19,592.00</u>

Component	Shear resistance on each wall line
5/8 Bolts	24,000# each wall line
640 plf Plywood	16,640# each wall line
L90s	31,912# each wall line

Standard Plan A - 1,350sf - One Story - 2' Cripple Wall - Heavy Construction <u>\$7,432.00</u>

Base shear = 6277#on each wall line.

Component Capacities	Shear resistance on each wall line
5/8 Bolts- 1500#	7,500# each wall line
Plywood-550plf	6600# each wall line
L90s - 925#	6475# each wall line

•

Item	P-1100	SPA	P-1100	SPA	P-1100	SPA	P-1100	SPA
Bolts	64	20					\$4620	\$1540
Plywood			104lf	48lf			\$9360	\$4800
L90s					136	28	\$4524	\$1092
Total Cost							\$19,592	\$7,432
V=								0.186 W

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	33,000# each side
Plywood-380plf	18,240# each side
L90s - 925#	44,400#each side

Standard Plan A - 3.150sf - Two Story - 5' Cripple Wall - Light Construction with Tie Downs

Base shear = 8642#on each wall line.

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	9,000# each side
Plywood-550plf	8.800# each side
L90s - 925#	9,250# each side

TWO STORY

P-1100 - 3,150sf – Two Story - 5' Cripple Wall - Light Construction - Tie Downs \$49,384.00

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	33,000# each side
Plywood-380plf	18,240# each side
L90s - 925#	44,400#each side

Standard Plan A - 3.150sf - Two Story - 5' Cripple Wall - Light Construction with Tie Downs <u>Total \$15,688</u>

Base shear = 8642#on each wall line.

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	9,000# each side
Plywood-550plf	8.800# each side
L90s - 925#	9,250# each side

Item	P-1100	SPA	P-1100	SPA	P-1100	SPA	P-1100	SPA
Bolts	88	24					\$4620	\$1848
Plywood			192lf	64lf			\$9360	\$10,560
L90s					192	40	\$4524	\$1092
T-Downs					16	8	\$3440	\$1720
Total Cost	t						\$49,384	\$15,688,
V=								0.186 W

P-1100 3.150sf - Two Story - 5' Cripple Wall - Medium Construction with Tie Downs

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	37,500# each side
Plywood-490plf	20,580# each side
L90s -	49,950#each side

Standard Plan A - 3.150sf - Two Story - 5' Cripple Wall - Medium Construction with Tie Downs

Base shear = 12010#on each wall line.

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	12,000# each wall line
Plywood-550plf	13,200# each wall line
L90s -	12,950#each wall line

P-1100 3.150sf - Two Story - 5' Cripple Wall - Medium Construction with Tie Downs \$47,284

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	37,500# each side
Plywood-490plf	20,580# each side
L90s -	49,950#each side

Standard Plan A - 3.150sf - Two Story - 5' Cripple Wall - Medium Construction with Tie Downs Total \$22,530

Base shear = 12010#on each wall line.

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	12,000# each wall line
Plywood-550plf	13,200# each wall line
L90s -	12,950#each wall line

Item	P-1100	SPA	P-1100	SPA	P-1100	SPA	P-1100	SPA
Bolts	100	32					\$4620	\$1848
Plywood			168lf	96lf			\$9360	\$10,560
L90s					216	56	\$4524	\$1092
T-Downs					16	16	\$3440	\$1720
Total Cost	t						\$47,284	\$22,530,
V=								0.186

P-1100 - 3,150sf - Two Story - 5' Cripple Wall - Heavy Construction with Tie Downs

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	46,500# each side
Plywood-640 plf	30,720# each side
L90s -	62,900# each side

Standard Plan A - 3.150sf - Two Story - 5' Cripple Wall - Heavy Construction - Tie Downs

Base shear = 13,182#on each wall line.

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	12,000# each wall line
Plywood-550plf	13,200# each wall line
L90s -	12,950#each wall line

P-1100 - 3,150sf - Two Story - 5' Cripple Wall - Heavy Construction - Tie Downs

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	46,500# each side
Plywood-640 plf	30,720# each side
L90s -	62,900# each side

Standard Plan A - 3.150sf - Two Story - 5' Cripple Wall - Heavy Construction - Tie Downs

Base shear = 13,182#on each wall line.

Component	Shear resistance on each wall line
5/8 Bolts- 1500#	12,000# each wall line
Plywood-550plf	13,200# each wall line
L90s -	12,950#each wall line

Item	P-1100	SPA	P-1100	SPA	P-1100	SPA	P-1100	SPA
Bolts	124	40					\$9548	\$3080
Plywood			192lf	961f			\$31,680	\$15,840
L90s					272	64	\$10,608	\$2496
T-Downs					16	16	\$3440	\$3,440
Total Cost	t						\$55,276	\$24,392,
V =								0.186

P-1100 - 1,350sf - No Cripple Wall - Light Construction - Type B Connectors

Standard Plan A - 1,350sf - No Cripple Wall - Light Construction - Type A Connector rather than a Type B Connector.

P-1100 - 1,350sf - No Cripple Wall – Single Story Light Construction - Type B Connectors <u>Total \$15,740</u>

Component	Shear resistance on each wall line
Type B Connector 960#	15,360# each wall line
12" rip cut shims	Shims do not require connection to sill
L90s – 925#	23,125# each side

P-1100 - 1,350sf - No Cripple Wall - Single Story-Light Construction - Type A Connectors

Base shear = 4,268#on each wall line.

Component	Shear resistance on each wall line
Type A Connector 1530#	6,120# each wall line
L90s – 925#	6,475# each wall line

Cost Comparison

P-1100 Type B Connector

Type B Connector	64	\$8640
12" Rip Cut Shims	64	\$320
L90s	100	\$3900
	Total	\$15,740

SPA Type A Connector

Type B Connector	16	\$2,160
12"Rip Cut Shims	NA	NA
L90s	28	\$1092
	Total	\$3252

P-1100 - 3,150sf - Two Story - No Cripple Wall - Medium Construction - Type B Connectors

Standard Plan A - 3,150sf – Two Story No Cripple Wall - Medium Construction - Type A Connector.

P-1100 - 3,150sf - Two Story - No Cripple Wall - Medium Construction - Type B Connectors

Component	Shear resistance on each wall line	
Type B Connector 960#	32,640# each side	
12"ripped shims	Shims do not require connection to sill	
L90s	49,950# each side	

Standard Plan A - 3,150sf - No Cripple Wall - Light Construction - Type A Connector. <u>Total \$6,348</u>

Base shear = 12.010# on each wall line.

Component	Shear resistance on each wall line
Type A Connector 1,530#	12,240# each wall line
L90s – 925#	12,025# each wall line

Cost Comparison

P-1100 Type B Connector

Type B Connector	136	\$18,360
12" Rip Cut Shims	136	\$6800
L90s	216	\$8424
	Total	\$33,584

SPA Type A Connector

Type B Connector	32	\$4,320
12"Rip Cut Shims	NA	NA
L90s	52	\$2,028
Tota	1	\$6348
V=		0.186 W

P-1100-1,350sf – No Cripple Wall - Light Construction – Detail 3, Sheet D2 with Type B Connectors

Detail 3, Sheet D2

Component	Shear resistance on each wall line
Type B Connector 960#	15,360# each wall line
4' Rip Cut Runners. No load rating	Does not meet 2" min. penetration requirement
L90s -	23,125# each side

16 Type A Connectors = \$2,160 (16) 2 x 4 x 24" Cross Cut Shims \$1,440 Alternative to Detail3 Sheet 2 Using 24 inch cross cut shims 28 L90s \$1,092 - Legend -Total \$4,692 I L90 — Type A Connector Standard Plan Set A Single Story 1350 sf Type A Connector No Cripple Wall Light Construction Bay Area Retrofit Seismic Retrofit Contractor (510) 548-1111

Standard Plan A - 1,350sf - No Cripple Wall - Light - Construction - 2' Cross Cut Shims -Type A Connector.

Base shear = 4,268#on each wall line.

Component	Shear resistance on each wall line
Type A Connector 960#	6,120# each wall line
30" Cross Cut Shims with (4) ¹ / ₄ " SDS screws	6,400# each wall line
L90s -	6,475# each wall line

C1

Comparison

P-1100-1,350sf – No Cripple Wall - Light Construction – Detail 3, Sheet D2 <u>\$26,264</u>

Component	Shear resistance on each wall line
Type B Connector 960#	15,360# each wall line
4' Rip Cut Runners. No load rating	Does not meet 2" min. penetration requirement
L90s -	23,125# each side

Standard Plan A - 1,350sf - No Cripple Wall - Light - Construction – 2' <u>\$4,692</u>

Base shear = 4,268#on each wall line.

Shear resistance on each wall line

Type A Connector 960#	6,120# each wall line
30" Cross Cut Shims with (4) 1/4" SDS screws	6,400# each wall line
L90s -	6,475# each wall line

COST COMPARISON

Component

P-1100 Detail 3, Sheet D2

Type B Connector	64	\$8,640
4' Rip Cut Runners.	64	\$6800
L90s	100	\$3900
То	al	\$19,340

Alternate SPA Type A Connector

Type B Connector	16	\$2,160
2' Cross Cut Shims	16	\$1,440
L90s	28	\$1092
	Total	\$4692
	V =	0.186 W

Conclusion

On average FEMA P-1100 retrofits cost three times as much as retrofits designed using Standard Plan A. Seismic retrofits are, and will continue to be, voluntary. This has been local jurisdiction policy all over the state for decades.

Homeowners must therefore be enticed by reasonable cost rather than discouraged by high cost retrofits. High cost is the number one disincentive homeowner face when deciding whether or not to improve the lateral force resisting system of their home.

The Seismic Design CO-efficent Impact on Cost

The seismic design Coefficient in FEMA P-1100 for plywood is 0.262.

The seismic design Coefficient in FEMA P-1100 for bolts and framing anchors is 0.393.

The seismic design Coefficient in Standard Plan A is 0.186 no matter which retrofit component is considered.

This is why bolt, plywood, and L90 capacities never match in P-1100. For example, in this P-1100 retrofit for a 3.150sf - Two Story - 5' Cripple Wall - Medium Construction home the difference in capacities and quantities vary greatly. This has an enormous impact on cost.

Component	FEMA P-1100	Total capacity and cost
(100) 5/8 Bolts-	150,000 # = \$7,700	
(168lf) 490 plf Plywood-	82,320 # = \$27.720	
(216) L90s	199,800 # total = \$8,4	424
TOTAL COST	\$43,844	

This is unaffordable for most homeowners.

On the other hand, the earthquake resistance of bolts, plywood, and L90s are practically the same when Standard Plan A's Seismic Design Coefficient of 0.186 is applied equally to all components. The matching of capacities reduces cost considerably.

Component	Standard Plan A	Total capacity and cost
(32) Bolts- 1500#	48,000# = \$2,464	
(96lf) 550plf Plywood-	52,800# = \$15,840	
(56) L90s -	51.800# = \$2,184	
TOTAL COST	\$20,488	

This is affordable for most homeowners.

Conclusion

The Seismic Design Coefficient in P-1100 drives the cost beyond what most homeowners can afford and will cause homeowners to revert to other design systems such as such as Standard Plan A or self-styled systems contractors have created themselves.

If this standard is not made more affordable it will never be used to reduce problems in found voluntary seismic

Appendix A

Standard Plan A's Engineering Background – By Jim Russell

Here are the <u>complete calculations</u>.

The following calculations determine the seismic load demand to cripple walls and foundation sill plates for conditions commonly found in existing wood-framed residential buildings located in the San Francisco Bay Area. These demands are the basis for the cripple wall bracing and foundation sill anchorage requirements contained in the East Bay and Peninsula Chapter of ICC Seismic Retrofit Provisions. Certain assumptions are made in the calculation of these demand loads. They include:

- 1. Wood structural panels are used to brace the cripple walls, and the buildings are limited to a maximum of two stories. Therefore, the R factor used is 5.5. (2001 CBC Table 16-N)
- 2. The Redundancy Factor rho (ρ) = 1.0, because the cripple wall bracing lengths along each exterior wall in each axis are equal, or are nearly equal. (2001 CBC Sec.1630.1.1)
- 3. The Near Source Factor (Na) = 1.3, to account for buildings that are located between 4 and 10 kilometers of a Type A fault. This value is less than the maximum Na = 1.5 specified for locations 2 kilometer or less from a Type A fault, but is greater than the Na = 1.1 value permitted for buildings that are, 1) located on soil classified not greater than type SD, 2) are not defined by the code as being irregular, and 3) have rho = 1.0. (CBC Sec.1629.4.2 and Tables 16-L, 16-M, and 16-S)

- 4. New resisting elements are located at the building perimeter only, therefore, one-half of the total seismic load in each axis is resisted by each of two parallel perimeter wall lines.
- 5. No reduction from current code force levels is being taken, as is permitted by Section 301.3 of the Guidelines for Seismic Retrofit of Existing Buildings. (ICBO, 2001)

Certain assumptions are made with respect to the capacities of the new materials added to strengthen the buildings. They include:

1. Allowable stresses are increased by a factor of 1.33 for short term seismic loads, or are based on tabular values already adjusted for seismic loading (2001 CBC Table 23-II-I-1).

The following assumptions have also been made regarding the construction of the houses:

- 1. The floor to ceiling wall height is 8 feet.
- 2. The roof slope is 4:12, with gable ends occurring on the short (transverse) side, and two foot eave overhangs on all sides.
- 3. Four Cases of exterior and interior wall finish and roofing are considered.
- A) Lightweight roofing (5 psf) of wood shake, wood shingle, or composition shingle, exterior wood sheathing or board finish, and ½" gypsum wallboard interior finish.
- B) Lightweight roofing, exterior wood sheathing or board finish, and gypsum lath and plaster interior finish. This is considered the definition of "Light Construction"
- C) Lightweight roofing, cement plaster (stucco) exterior finish, and gypsum lath and plaster interior finish.
- D) Lightweight roofing, cement plaster (stucco) exterior finish, and gypsum wall board interior finish.

Category D was missing from the original calculations and I added it based on the weights defined elsewhere in the calculations. These calculations look at 3 different footprint sizes:

- For one-story buildings the footprint sizes are:
- 30 feet by 40 feet (1,200 square feet)
 30 feet by 50 feet (1,500 square feet)
 36 feet by 56 feet (2,016 square feet)
- For two-story buildings the footprint sizes are:
- 30 feet by 30 feet (1,800 square feet)
 30 feet by 40 feet (2,400 square feet)

3) 30 feet by 50 feet (3,000 square feet)

Appendix B

I averaged the weights of these footprints and created this table. These weights are used in determining Standard Plan A base shear.

Light Construction	Medium Construction
ROOF: SHNGLES SIDING: WOOD WALLS: DRYWALL	ROOF: SHNGLES SIDING: STUCCO WALLS: DRYWALL
ONE STORY- <mark>34 psf</mark> TWO STORY – <mark>29.5 psf</mark>	ONE STORY- <mark>41 psf</mark> TWO STORY- <mark>36.5 psf</mark>
Medium Construction	Heavy Construction
ROOF: SHINGLES	ROOF: SHNGLES
SIDING: WOOD	SIDING: STUCCO
WALLS: PLASTER	WALLS: PLASTER
ONE STORY- <mark>45psf</mark> TWO STORY- <mark>41 psf</mark>	ONE STORY- <mark>50psf</mark> TWO STORY- <mark>45psf</mark>