Revision 3 Draft 4/21/2004

SUBSTANTIATING DATA FOR CRIPPLE WALL and SILL BOLTING
 SEISMIC RETROFIT of ONE \& TWO FAMILY DWELLINGS

The following calculations determine the seismic load demand to cripple walls and foundation sill plates for conditions commonly found in existing wood-framed residential buildings located in the San Francisco Bay Area. These demands are the basis for the cripple wall bracing and foundation sill anchorage requirements contained in the East Bay and Peninsula Chapter of ICC Seismic Retrofit Provisions. Certain assumptions are made in the calculation of these demand loads. They include:

1. Wood structural panels are used to brace the cripple walls, and the buildings are limited to a maximum of two stories. Therefore, the R factor used is 5.5 . (2001 CBC Table $16-\mathrm{N}$)
2. The Redundancy Factor rho $(\rho)=1.0$, because the cripple wall bracing lengths along each exterior wall in each axis are equal, or are nearly equal. (2001 CBC Sec.1630.1.1)
3. The Near Source Factor $(\mathrm{Na})=1.3$, to account for buildings that are located between 4 and 10 kilometers of a Type A fault. This value is less than the maximum $\mathrm{Na}=1.5$ specified for locations 2 kilometer or less from a Type A fault, but is greater than the $\mathrm{Na}=1.1$ value permitted for buildings that are, 1) located on soil classified not greater than type SD, 2) are not defined by the code as being irregular, and 3) have rho $=$ 1.0. (CBC Sec.1629.4.2 and Tables 16-L, 16-M, and 16-S)
4. New resisting elements are located at the building perimeter only, therefore, one-half of the total seismic load in each axis is resisted by each of two parallel perimeter wall lines.
5. No reduction from current code force levels is being taken, as is permitted by Section 301.3 of the Guidelines for Seismic Retrofit of Existing Buildings. (ICBO, 2001)

Certain assumptions are made with respect to the capacities of the new materials added to strengthen the buildings. They include:

1. Allowable stresses are increased by a factor of 1.33 for short term seismic loads, or are based on tabular values already adjusted for seismic loading (2001 CBC Table 23-II-I-1).
2. For determining bolt capacities, foundation sill plates are considered to be tight grain Redwood. Based on observations, and some limited testing, the dowel bearing strength of this species is considered to be equivalent to Douglas Fir having a specific gravity of 0.50. Bolt capacity is determined using one-half of the allowable double shear capacity for a sill plate twice the thickness of the actual 2x sill plate (2001 CBC Sec 2316.2 Item 24, amending 1991 NDS Sec. 8.3), and taking a 1.33 increase for duration of load. The resulting sill bolt capacities are $1 / 2$ " diameter $=\mathbf{8 2 0}$ pounds; $\mathbf{5 / 8}$ " diameter $=\mathbf{1 , 1 7 0}$ pounds.
3. Other wood members transmitting loads are assumed to be Douglas Fir and nails are assumed to be common wire diameter.
The buildings used to develop the seismic forces assume a rectangular building footprint where:

- For one-story buildings the footprint sizes are: 1) 30 feet by 40 feet (1,200 square feet)

2) 30 feet by 50 feet (1,500 square feet)
3) 36 feet by 56 feet (2,016 square feet)

- For two-story buildings the footprint sizes are: 1) 30 feet by 30 feet (1,800 square feet)

2) 30 feet by 40 feet (2,400 square feet)
3) 30 feet by 50 feet (3,000 square feet)

The following assumptions have also been made regarding the construction of the houses:

1. The floor to ceiling wall height is 8 feet.
2. The roof slope is $4: 12$, with gable ends occurring on the short (transverse) side, and two foot eave overhangs on all sides.
3. Four Cases of exterior and interior wall finish and roofing are considered.
A) Lightweight roofing (5 psf) of wood shake, wood shingle, or composition shingle, exterior wood sheathing or board finish, and $1 / 2 "$ gypsum wallboard interior finish.
B) Lightweight roofing, exterior wood sheathing or board finish, and gypsum lath and plaster interior finish. This is considered the definition of "Light Construction"
C) Lightweight roofing, cement plaster (stucco) exterior finish, and gypsum lath and plaster interior finish.
D) Heavy roofing (11 psf) of concrete or clay tile, cement plaster (stucco) exterior finish, and gypsum lath and plaster interior finish. This is considered the definition of "Heavy Construction. Certain types of clay tile using mortar setting for the tile will exceed this unit weight and therefore should be excluded from using these prescriptive methods.
4. Interior partitions are framed with $2 x 4$ studs at 16 " o.c. with either $1 / 2$ " gypsum wallboard (for 3A) or 3/8" gypsum lath and gypsum plaster (for 3B, 3C or 3D) on each side. The lath and plaster is a heavier wall finish (4.5 psf) than standard $1 / 2$ " thick gypsum wallboard (2.2 psf). Ceilings below attics and below a second floor are assumed to be either $1 / 2$ " gypsum wallboard (for 3A) or 3/8" gypsum lath and gypsum plaster (for 3B, 3C or 3D).
5. The assumed layout of interior walls in a single story building is two in the long (longitudinal) direction and three cross walls in the short (transverse) direction. The assumed layout of interior partitions in a two-story building are two in the long direction and three in the short direction at the upper floor level, and one in the long direction and two in the short direction at the first floor level.
6. Exterior walls are framed with 2 x 4 studs at $16^{\prime \prime}$ o.c. with either wood board or panel siding (for 3A or 3B), or cement plaster (stucco) exterior wall finishes (for 3C or 3D). The interior finish of exterior walls is assumed to be either $1 / 2$ " gypsum wallboard (for 3A) or 3/8" gypsum lath and gypsum plaster (for 3B, 3C or 3D). Attic gable end walls are assumed to be unfinished on the interior face.
7. The site is assumed to have no slope along an exterior wall line greater than 1:10 and cripple walls are limited to 4 feet in height at any point.

TABLE 3A - SUMMARY OF UNIT LOADS

The basic unit dead loads used to calculate the seismic loading demand for Case 3A are:

Roof/ceiling system: Light roofing and gypsum board ceiling finish. Light roofing is defined as wood shakes over spaced sheathing or wood shingles or composition shingles over solid sheathing. Vertical load adjustment for $4: 12$ roof slope $=1.054$

Light roofing system:	5.0 psf
Rafters \& ceiling framing:	2.5 psf
Gypsum wallboard:	2.2 psf
Miscellaneous:	$\underline{0.8 \mathrm{psf}}$
Light roof Total: $10.5 \times 1.054=$	$\mathbf{1 1 . 0 ~ p s f}$

Second floor/ceiling system: Gypsum wallboard is assumed to be the interior ceiling finish.

Carpet and fiber pad or finished wood flooring: 1.5 psf	
7/8" thick wood subflooring:	2.5 psf
2×10 joists at 16 " spacing:	2.5 psf
Gypsum wallboard:	2.2 psf
Second floor typical Total:	8.7 psf (9.0 psf used)

First floor system:

Carpet and fiber pad or finished wood flooring:	1.5 psf
$7 / 8^{\prime \prime}$ thick wood subflooring:	2.5 psf
2×10 joists at $16^{\prime \prime}$ spacing:	$\underline{2.5 \mathrm{psf}}$
First floor Total:	
$\mathbf{6 . 5 ~ \mathbf { ~ p s f }} \mathbf{(7 . 0} \mathbf{~ p s f}$ used)	

Exterior walls: Wood siding or wood boards exterior finish and gypsum wallboard interior finish

7/8" wood board siding over building paper: 2.5 psf
2 x 4 studs at 16 " spacing: 2.0 psf
Gypsum wallboard:
2.2 psf

Miscellaneous (insulation, piping, ducts, etc.): $\quad 1.0 \mathrm{psf}$
Exterior wall Total: $\quad \quad \mathbf{7 . 7} \mathbf{~ p s f}^{\mathbf{1}} \mathbf{~}^{\mathbf{8}} \mathbf{~ p s f}$ used)
${ }^{1}$ Attic gable wall weights are based on exterior finish and framing unit loads only. Cripple wall weights are based on exterior finish and framing plus interior $1 / 2$ " plywood.

Interior partitions: Gypsum wallboard interior finish

2×4 studs at 16 " spacing:	2.0 psf
Gypsum wallboard (2 sides):	4.4 psf
Miscellaneous:	$\underline{1.0 \mathrm{psf}}$
Interior partitions Total:	$\mathbf{7 . 4} \mathbf{~ p s f} \mathbf{(8 ~ p s f} \mathbf{u s e d})$

TABLE 3B - SUMMARY OF UNIT LOADS

The basic unit dead loads used to calculate the seismic loading demand for Case 3B are:

Roof/ceiling system: Light roofing and gypsum lath and plaster ceiling finish. Light roofing is defined as wood shakes over spaced sheathing or wood shingles or composition shingles over solid sheathing. Vertical load adjustment for $4: 12$ roof slope $=1.054$

Light roofing system:	5.0 psf
Rafters \& ceiling framing:	2.5 psf
Gypsum lath and plaster:	4.5 psf
Miscellaneous:	$\underline{0.8 \mathrm{psf}}$
Light roof Total: $12.8 \times 1.054=$	$\mathbf{1 3 . 5} \mathbf{~ p s f} \mathbf{(1 4 ~ p s f ~ u s e d)}$

Second floor/ceiling system: Gypsum lath and plaster interior ceiling finish.
Carpet and fiber pad or finished wood flooring: 1.5 psf
7/8" thick wood subflooring: 2.5 psf
2×10 joists at 16 " spacing: 2.5 psf
Gypsum lath and plaster:
4.5 psf

Second floor typical Total: $\quad 11.0$ psf

First floor system:

Carpet and fiber pad or finished wood flooring:	1.5 psf
$7 / 8$ " thick wood subflooring:	2.5 psf
2×10 joists at 16 " spacing:	$\underline{2.5 \mathrm{psf}}$
First floor Total:	
$\mathbf{6 . 5 ~ p s f}$ (7.0 psf used)	

Exterior walls: Wood siding or wood boards exterior finish and gypsum lath and plaster interior finish

7/8" wood board siding over building paper: 2.5 psf
2×4 studs at 16 " spacing:
2.0 psf

Gypsum lath and plaster:
4.5 psf

Miscellaneous (insulation, piping, ducts, etc.): $\quad 1.0 \mathrm{psf}$

$$
\text { Exterior wall Total: } \quad \overline{10.0} \mathbf{p s f}^{1}
$$

${ }^{1}$ Attic gable wall weights are based on exterior finish and framing unit loads only. Cripple wall weights are based on exterior finish and framing plus interior $1 / 2$ " plywood.

Interior partitions: Gypsum lath and plaster is the interior finish

2×4 studs at $16 "$ spacing:	2.0 psf
Gypsum lath and plaster (2 sides):	9.0 psf
Miscellaneous:	$\underline{1.0 \mathrm{psf}}$
Interior partitions Total:	$\mathbf{1 2 . 0} \mathbf{~ p s f}$

TABLE 3C - SUMMARY OF UNIT LOADS
The basic unit dead loads used to calculate the seismic loading demand for Case 3C are:
Roof/ceiling system: Light roofing and gypsum lath and plaster ceiling finish. Light roofing is defined as wood shakes over spaced sheathing or wood shingles or composition shingles over solid sheathing. Vertical load adjustment for $4: 12$ roof slope $=1.054$

Light roofing system:	5.0 psf
Rafters \& ceiling framing:	2.5 psf
Gypsum lath and plaster:	4.5 psf
Miscellaneous:	$\underline{0.8 \mathrm{psf}}$
Light roof Total: $12.8 \times 1.054=$	$\mathbf{1 3 . 5} \mathbf{~ p s f} \mathbf{(1 4 ~ p s f}$ used)

Second floor/ceiling system: Gypsum lath and plaster interior ceiling finish.

Carpet and fiber pad or finished wood flooring: 1.5 psf
7/8" thick wood subflooring: 2.5 psf
2×10 joists at 16 " spacing: 2.5 psf
Gypsum lath and plaster:
Second floor typical Total: $\quad 11.0$ psf

First floor system:

Carpet and fiber pad or finished wood flooring: 1.5 psf
7/8" thick wood subflooring: 2.5 psf
2×10 joists at 16 " spacing:
2.5 psf

First floor Total:
6.5 psf (7.0 psf used)

Exterior walls: Cement plaster exterior finish and gypsum lath and plaster interior finish
1" exterior cement plaster (stucco): 10.0 psf
2×4 studs at 16 " spacing: 2.0 psf
Gypsum lath and plaster: 4.5 psf
Miscellaneous (insulation, piping, ducts, etc.): $\quad 0.5 \mathrm{psf}$
Exterior wall Total: $\quad 17.0$ psf ${ }^{1}$
${ }^{1}$ Attic gable wall weights are based on exterior finish and framing unit loads only.
Cripple wall weights are based on exterior finish and framing plus interior $1 / 2$ " plywood.
Interior partitions: Gypsum lath and plaster is the interior finish
2×4 studs at 16 " spacing: 2.0 psf
Gypsum lath and plaster (2 sides): 9.0 psf
Miscellaneous: 1.0 psf
Interior partitions Total: 12.0 psf

TABLE 3D - SUMMARY OF UNIT LOADS

The basic unit dead loads used to calculate the seismic loading demand for Case 3D are:
Roof/ceiling system: Heavy roofing and gypsum lath and plaster ceiling finish. Heavy roofing is defined as concrete tile or clay tile at 11 psf maximum over solid sheathing. Vertical load adjustment for $4: 12$ roof slope $=1.054$ NOTE: Clay tile roofing set in mortar will exceed this limit and should be excluded from using this prescriptive method

Heavy roofing system: $\quad 11.0 \mathrm{psf}$
Rafters \& ceiling framing: 2.5 psf
Gypsum lath and plaster: 4.5 psf
Miscellaneous: 0.8 psf
Heavy roof Total: $18.8 \times 1.054=19.8$ psf (20 psf used)
Second floor/ceiling system: Gypsum lath and plaster interior ceiling finish.
Carpet and fiber pad or finished wood flooring: 1.5 psf
7/8" thick wood subflooring: 2.5 psf
2 x 10 joists at 16 " spacing: 2.5 psf
Gypsum lath and plaster:
4.5 psf

Second floor typical Total: $\quad 11.0 \mathbf{p s f}$

First floor system:

Carpet and fiber pad or finished wood flooring:	1.5 psf
7/8" thick wood subflooring:	2.5 psf
2×10 joists at 16 " spacing:	2.5 psf
First floor Total:	6.5 psf (7.0 psf used)

Exterior walls: Cement plaster exterior finish and gypsum lath and plaster interior finish
1" cement plaster (stucco): 10.0 psf
2 x 4 studs at 16 " spacing: 2.0 psf
Gypsum lath and plaster:
4.5 psf

Miscellaneous (insulation, piping, ducts, etc.): $\quad 0.5 \mathrm{psf}$

$$
\text { Exterior wall Total: } \quad \overline{17.0 ~ p s f}{ }^{1}
$$

${ }^{1}$ Attic gable wall weights are based on exterior finish and framing unit loads only. Cripple wall weights are based on exterior finish and framing plus interior $1 / 2$ " plywood.

Interior partitions: Gypsum lath and plaster is the interior finish

2×4 studs at $16 "$ spacing:	2.0 psf
Gypsum lath and plaster (2 sides):	9.0 psf
Miscellaneous:	$\underline{1.0 \mathrm{psf}}$
Interior partitions Total:	$\mathbf{1 2 . 0} \mathbf{~ p s f}$

Case 3A One Story Demand / Capacity Calculations for 30’ x 50’ (1,500 Sq. Ft.)
Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: 1 / 1.4 Seismic V $=0.186$ W (2001 CBC Equation 30-5)

Dead loads (W) tributary to cripple wall level for 1,500 square feet total floor area:
Roof/Ceiling: 11.0 psf (34' x 54') = 20.196 kips
First floor: 7 psf (30' x 50') = 10.50 kips

Exterior Walls:
1st Story walls: $\quad 8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+50^{\prime} \times 2\right)=10.24$ kips
Gable end walls: 5 psf (5 ' x 30 ') $2 / 2=0.75$ kips
Cripple walls: $\quad 6$ psf (2') (30' x $2+50$ ' x 2$) \quad 1.92 \mathrm{kips}$
12.91 kips

Interior walls: 8 psf (8') (29' x 3 + 49' x 2) = 11.84 kips
Sum W $=20.2+10.5+12.9+11.84=55.45$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=10.313 \mathrm{kips}$
V to each cripple wall line $=10.313 / 2=5.16$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
5,156 pounds / 820 pounds/bolt = $7-\mathbf{1} / \mathbf{2}$ "bolts, or
5,156 pounds / 1170 pounds/bolt $=5-\mathbf{5 / 8}$ " bolts, or
5,156 pounds / 1340 pounds per UFP10 $=\mathbf{4}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity $=$ lineal feet of shear wall based on 16 " o.c. stud spacing $5,156 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{1 4}^{\prime} \mathbf{- 8}{ }^{\prime \prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=5,156$ pounds $/ 14.67$ feet x 4.0 feet $=1,406$ pounds w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$ $\mathrm{OTM}=1,406$ pounds $\times 2$ foot wall height $=2,813 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=1,062 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,813-1,062) / 4$ feet $=438$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=5,156$ pounds $/ 14.67$ feet x 4.0 feet $=1,406$ pounds w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=186.5 \mathrm{plf}$
OTM $=1,406$ pounds $\times 2$ foot wall height $=2,813 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 186.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,014 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,813-2,014) / 4$ feet $=\mathbf{2 0 0}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:

V to 8 foot long panel $=5,156$ pounds $/ 14.67$ feet x 8.0 feet $=2,812$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$ $\mathrm{OTM}=2,812$ pounds $\times 2$ foot wall height $=5,625 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=3,439 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(5,625-3,539)$ / 8 feet $=261$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '-0" panel end studs
Overturning of $\mathbf{2}$ foot high cripple wall with 8 foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=5,156$ pounds $/ 14.67$ feet x 8.0 feet $=2,812$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=186.5 \mathrm{plf}$ OTM $=2,812$ pounds $\times 2$ foot wall height $=5,625 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 186.5$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=6,714 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(5,625-6,714) / 8$ feet $=$ NO uplift

Overturning of $\mathbf{2}$ foot high cripple wall with 14 '- $\mathbf{8}^{\prime \prime}$ foot continuous panel length along gable end wall:

V to 14 ' -8 " long panel $=5,156$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$
$\mathrm{OTM}=5,156$ pounds x 2 foot wall height $=10,312 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (16’-8" tributary length $)(14.67$ feet $/ 2$ moment arm $)=10,817 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(10,312-10,817) / 14.67$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall

V to 8 foot long panel $=5,156$ pounds $/ 14.67$ feet $x 8.0$ feet $=2,813$ pounds w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \operatorname{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$ $\mathrm{OTM}=2,813$ pounds x 4 foot wall height $=11,250 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=3,972 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,250-3,972) / 8$ feet $=\mathbf{9 1 0}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each 8'-0" panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=5,156$ pounds $/ 14.67$ feet $x 8.0$ feet $=2,813$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=198.5 \mathrm{plf}$
$\mathrm{OTM}=2,813$ pounds x 4 foot wall height $=11,250 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 198.5$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=7,146 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,250-7,146) / 8$ feet $=513$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8'-0" panel end studs
Overturning of 4 foot high cripple wall with 12 foot minumum panel length along gable end wall
V to 12 foot long panel $=5,156$ pounds $/ 14.67$ feet $\times 12.0$ feet $=4,218$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \operatorname{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
$\mathrm{OTM}=4,218$ pounds $\times 4$ feet wall height $=16,874 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (14 feet tributary length $)(12$ feet) $/ 2$ moment arm $)=8,341 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(16,874-8,341) / 12$ feet $=711$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each braced 12'-0" panel end studs (one each side)
Overturning of 4 foot high cripple wall with 12 foot minimum panel length along longitudinal wall
V to 12 foot long panel $=5,156$ pounds $/ 14.67$ feet $x 12.0$ feet $=4,218$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=198.5 \mathrm{plf}$
$\mathrm{OTM}=4,218$ pounds $\times 4$ feet wall height $=16,874 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 198.5$ plf (14 feet tributary length $)(12$ feet $) / 2$ moment arm $)=15,007 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(16,874-15,007) / 12$ feet $=155$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs
Overturning of 4 foot high cripple wall with 14 '- $\mathbf{8 "}^{\prime \prime}$ foot continuous panel length along gable end wall:
V to 14 '-8" long panel $=5,156$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
$\mathrm{OTM}=5,156$ pounds x 4 foot wall height $=20,624 \mathrm{lb}-\mathrm{ft}$

RTM $=0.9 \times 110.3$ plf (16 '-8" tributary length)(14.67 feet $/ 2$ moment arm) $=12,137 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(20,624-12,137) / 14.67$ feet $=579$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of $14^{\prime}-8$ " braced panel end studs
Overturning of 4 foot high cripple wall with 14 ' -8 " foot continuous panel length along longitudinal wall:

```
V to 14'-8" long panel \(=5,156\) pounds
w dead load to panel \(=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=198.5 \mathrm{plf}\)
\(\mathrm{OTM}=5,156\) pounds x 4 foot wall height \(=20,624 \mathrm{lb}-\mathrm{ft}\)
RTM \(=0.9 \times 198.5\) plf ( 16 '-8" tributary length)( 14.67 feet \(/ 2\) moment arm) \(=21,835 \mathrm{lb}-\mathrm{ft}\)
OTM - RTM \(/\) panel length \(=(20,624-21,835) / 14.67\) feet \(=\) NO uplift
```


Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or foundation sill plate

```
\(\mathrm{V}=5,156\) pounds / 450 pounds per connection = \(\mathbf{1 2} \mathbf{L 7 0}\) or A35, or
\(\mathrm{V}=5,156\) pounds \(/ 585\) pounds per connection \(=\mathbf{9} \mathbf{L 9 0}\) or \(\mathbf{H 1 0 R}\)
```

Transverse Wall Line $=\mathbf{3 0}$ feet $=\mathbf{1 7 2}$ plf
Longitudinal Wall Line = 50 feet $=103$ plf

Case 3A One Story Demand / Capacity Calculations for 30’ x 40’ (1,200 Sq. Ft.)
Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 11 psf (34' x 44') = 16.456 kips
First floor: 7 psf (30×40 ' $)=8.4$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime}\right.$ x $2+40^{\prime}$ x 2$)=8.96$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ' $2 / 2=0.75 \mathrm{kips}$
Cripple walls $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40 '\right.$ x 2$)=1.68$ kips
11.39 kips

Interior walls: $8 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 3+40^{\prime} \times 2\right)=10.88 \mathrm{kips}$
Sum $\mathrm{W}=16.456+8.4+11.39+10.88=47.126$ kips
Total $V=(0.186) \mathrm{W}=8.765 \mathrm{kips}$

V to each cripple wall line $=8.765 / 2=4.38$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
4,383 pounds / 820 pounds/bolt = $\mathbf{6}-\mathbf{1} / \mathbf{2}^{\prime \prime}$ bolts, or 4,383 pounds/ 1,170 pounds/bolt = $\mathbf{4 - 5 / 8}$ " bolts, or 4,383 pounds/ 1,340 pounds/UFP10 = $\mathbf{4}$ UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity $=$ lineal feet of shear wall based on 16 " o.c. stud spacing 4,383 lbs / 380 plf = 12’-0"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=4,383$ pounds $/ 12$ feet $x .0$ feet $=1,461$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$ $\mathrm{OTM}=1,461$ pounds $\times 2$ foot wall height $=2,922 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm) $=1,062 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,922-1,062) / 4$ feet $=465$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=4,383$ pounds $/ 12$ feet $x .0$ feet $=1,461$ pounds w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=186.5 \mathrm{plf}$ OTM $=1,461$ pounds $\times 2$ foot wall height $=2,922 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 186.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,014 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,922-2,014) / 4$ feet $=\mathbf{2 2 7}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'- 0 "' braced panel

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=4,383$ pounds $/ 12$ feet $x 8.0$ feet $=2,922$ pounds w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3$ plf $\mathrm{OTM}=2,922$ pounds $\times 2$ foot wall height $=5,844 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=3,540 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(5,844-3,540) / 8$ feet $=\mathbf{2 8 8}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 8 ' -0 " braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=4,383$ pounds $/ 12$ feet 8.0 feet $=2,922$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=186.5 \mathrm{plf}$
$\mathrm{OTM}=2,922$ pounds $\times 2$ foot wall height $=5,844 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 186.5$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=6,714 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(5,844-6,714)$ / 8 feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with 12 foot continuous panel length along gable end wall:

V to 12 foot long panel $=4,383$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$
$\mathrm{OTM}=4,383$ pounds $\times 2$ foot wall height $=8,766 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (14 foot tributary length)(12 feet $/ 2$ moment arm) $=7,434 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(8,766-7,434) / 12$ feet $=111$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each $12^{\prime}-0$ " braced panel
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=4,383$ pounds $/ 12$ feet x 8.0 feet $=2,922$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
$\mathrm{OTM}=2,922$ pounds $\times 4$ foot wall height $=11,688 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=3,972 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,688-3,972) / 8$ feet $=\mathbf{9 6 5}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each end stud of each 8 '- 0 "' panel (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=4,383$ pounds $/ 12$ feet $x .0$ feet $=2,922$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=198.5 \mathrm{plf}$
$\mathrm{OTM}=2,922$ pounds x 4 foot wall height $=11,688 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 198.5$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=7,146 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,688-7,146) / 8$ feet $=\mathbf{5 6 8}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud at 8 ' -0 " panels
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=4,383$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
$\mathrm{OTM}=4,383$ pounds x 4 foot wall height $=17,532 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (14 foot tributary length)(12 foot) $/ 2$ moment arm) $=8,341 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,532-8,341) / 12$ feet $=766$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each end stud of each $12^{\prime}-0$ " panel (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{1 2}$ foot minimum panel length along longitudinal wall
V to 12 foot long panel $=4,383$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=198.5 \mathrm{plf}$
OTM $=4,383$ pounds $\times 4$ foot wall height $=17,532 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 198.5$ plf (14 foot tributary length)(12 foot) $/ 2$ moment arm) $=15,007 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,532-15,007) / 12$ feet $=210$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud at $12^{\prime}-0$ " panels

Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=4,383$ pounds $/ 450$ pounds per connection $=\mathbf{1 0} \mathbf{L 7 0}$ or A35; or
$\mathrm{V}=4,383$ pounds $/ 585$ pounds per connection $=\mathbf{8} \mathbf{L 9 0}$ or $\mathbf{H 1 0 R}$
Transverse Wall Line $=\mathbf{3 0}$ feet $=\mathbf{1 4 6}$ plf
Longitudinal Wall Line $=40$ feet $=\mathbf{1 1 0}$ plf

Case 3A One Story Demand / Capacity Calculations for 36' $\mathbf{x} \mathbf{5 6}{ }^{\prime}=\mathbf{2 , 0 1 6}$ square feet

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 11 psf (40 ' x 60') $=26.40$ kips
First floor: 7 psf (36 x 56') = 14.11 kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 8 \mathrm{psf}\left(8^{\prime}\right)\left(36^{\prime} \times 2+56\right.$ x 2$)=11.776$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(6^{\prime} \times 36^{\prime}\right) 2 / 2=\quad 1.08$ kips
Cripple walls $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(36 '\right.$ x $\left.2+56^{\prime} \times 2\right)=\frac{2.21 \mathrm{kips}}{15.064 \mathrm{kips}}$
Interior wall: $8 \mathrm{psf}\left(8^{\prime}\right)\left(35 '\right.$ x $3+55^{\prime}$ x 2$)=13.76$ kips
Sum W $=20.4+14.11+15.06+13.76=69.336$ kips
Total $V=(0.186) \mathrm{W}=12.90 \mathrm{kips}$
V to each cripple wall line $=12.90 / 2=6.45 \mathrm{kips}$
Sill bolts needed in $2 x$ sill along each exterior wall line:
6,448 pounds / 820 pounds/bolt $=\mathbf{8}-\mathbf{1} / \mathbf{2}$ "bolts or
6,448 pounds $/ 1170$ pounds/bolt $=\mathbf{6 - 5 / 8}$ " bolts, or 6,448 pounds / 1340 pounds/bolt = 5 UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:

 V to each wall line / unit capacity $=$ lineal feet of shear wall based on 16 " o.c. stud spacing $6,448 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{1 7}$ '-4"
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=6,448$ pounds $/ 17.33$ feet x 4.0 feet $=1,488$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$ OTM $=1,488$ pounds $x 2$ foot wall height $=2,976 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=1,062 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = (2,976-1,062) / 4 feet $=478$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel
Overturning of 2 foot high cripple wall with 4 foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=6,448$ pounds $/ 17.33$ feet $x 4.0$ feet $=1,488$ pounds
w dead load to panel = $11 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=203 \mathrm{plf}$
$\mathrm{OTM}=1,488$ pounds x 2 foot wall height $=2,976 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,192 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(2,976-2,192) / 4$ feet $=\mathbf{1 9 6}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel

Overturning of 2 foot high cripple wall with 8 foot minimum panel length along gable end wall:
V to 8 foot long panel $=6,448$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,976$ pounds w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$ OTM $=2,976$ pounds $\times 2$ foot wall height $=5,952 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm) $=3,540 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(5,952-3,540) / 8$ feet $=302$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 8 ' -0 " braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with 8 foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=6,448$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,976$ pounds
w dead load to panel $=11 \mathrm{psf}(9)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}(8$ ' $)+6 \mathrm{psf}\left(2^{\prime}\right)=203$ plf
OTM $=2,976$ pounds $x 2$ foot wall height $=5,952 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,308 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(5,952-7,308) / 8$ feet $=$ NO uplift
Overturning of 2 foot high cripple wall with 12 foot minimum panel length along gable end wall:
V to 12 foot long panel $=6,448$ pounds $/ 17.33 \times 12.0$ feet $=4,464$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$
OTM $=4,464$ pounds x 2 foot wall height $=8,928 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (14 tributary length $)(12$ feet $/ 2$ moment arm$)=7,434 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(8,928-7,434) / 12$ feet $=\mathbf{1 2 5}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 12'-0" braced panel.

Overturning of $\mathbf{2}$ foot high cripple wall with 16 foot minimum panel length along gable end wall:
V to 16 foot long panel $=6,448$ pounds $/ 17.33 \times 16.0$ feet $=5,952$ pounds
w dead load to panel = $11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=98.3 \mathrm{plf}$
$\mathrm{OTM}=5,952$ pounds $\times 2$ foot wall height $=11,904 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 98.3$ plf (18 feet tributary length)(16 feet $/ 2$ moment arm) $=12,744 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = ($11,904-12,744$) 16 feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=6,448$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,976$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
$\mathrm{OTM}=2,976$ pounds $\times 4$ foot wall height $=11,904 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=3,972 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,904-3,972) / 8$ feet $=\mathbf{9 9 1}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each end stud of each 8 '- 0 "' panel (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=6,448$ pounds $/ 17.33$ feet x 8.0 feet $=2,976$ pounds
w dead load to panel $=11 \mathrm{psf}(9)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=215 \mathrm{plf}$
$\mathrm{OTM}=2,976$ pounds $\times 4$ foot wall height $=11,904 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 215$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=7,740 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,904-7,740) / 8$ feet $=\mathbf{5 2 0}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud at 8 ' -0 " panels
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end walls
V to 12 foot long panel $=6,448$ pounds $/ 17.33$ feet $\times 12.0$ feet $=4,464$ pounds
${ }^{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
OTM $=4,464$ pounds $\times 4$ foot wall height $=17,857 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (14 foot tributary length)(12 foot) $/ 2$ moment arm $)=8,341 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,857-8,341) / 12$ feet $=793$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each end stud of each 12' panel (one each side)

Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along longitudinal walls

V to 12 foot long panel $=6,448$ pounds $/ 17.33$ feet $x 12.0$ feet $=4,464$ pounds
w dead load to panel = $11 \mathrm{psf}(9)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=215 \mathrm{plf}$
OTM $=4,464$ pounds $x 4$ foot wall height $=17,857 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 215$ plf (14 foot tributary length)(12 foot) $/ 2$ moment arm) $=16,254 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,857-16,254) / 12$ feet $=133$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud at $12^{\prime}-0$ " panel
Overturning of $\mathbf{4}$ foot high cripple wall with 17 ’-4" foot continuous panel length along gable end walls
V to 17’-4" long panel $=6,448$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=110.3 \mathrm{plf}$
OTM $=6,448$ pounds $\times 4$ foot wall height $=25,793 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 110.3$ plf (19 '- 4 " tributary length)(17.33 feet) $/ 2$ moment arm) $=16,638 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = $(25,793-16,638) / 17.33$ feet $=\mathbf{5 2 8}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud of each $17^{\prime}-4^{\prime \prime}$ panel
Overturning of $\mathbf{4}$ foot high cripple wall with 17 '- $\mathbf{4 "}^{\prime \prime}$ foot continuous panel length along longitudinal wall

V to 17’-4" long panel $=6,448$ pounds
w dead load to panel $=11 \mathrm{psf}(9)+7 \mathrm{psf}\left(4^{\prime}\right)+8 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=215 \mathrm{plf}$
$\mathrm{OTM}=6,448$ pounds x 4 foot wall height $=25,793 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 215$ plf (19’-4" tributary length $)(17.33$ feet) $/ 2$ moment arm $)=32,422 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(25,793-32,422) / 17.33$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

Connection between floor and top of cripple wall or floor and foundation sill plate
$\mathrm{V}=6,448$ pounds $/ 450$ pounds per connection $=15 \mathrm{~L} 70$ or A35, or
$\mathrm{V}=6,448$ pounds $/ 585$ pounds per connection $=11 \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=36$ feet $=179$ plf
Longitudinal Wall Line $=56$ feet $=115$ plf

Case 3B One Story Demand / Capacity Calculations for 30' x 50' (1,500 Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: $1 / 1.4$ Seismic V $=0.186$ W (2001 CBC Equation 30-5)

Dead loads (W) tributary to cripple wall level for 1,500 square feet total floor area:
Roof/Ceiling: 14 psf (34' x 54') $=25.704$ kips

First floor: $7 \mathrm{psf}\left(30^{\prime} \times 50\right.$ ' $)=10.50$ kips
Exterior Walls:
1st Story walls: $10 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+50 ' \times 2\right)=12.80$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \mathrm{x} 30^{\prime}\right) 2 / 2=\quad 0.75$ kips
Cripple walls: 6 psf (2') (30' x $2+50 '$ x 2$) \quad \underline{1.92 \mathrm{kips}}$
15.47 kips

Interior walls: 12 psf (8') (29' x $3+49$ x 2$)=17.76$ kips
Sum $\mathrm{W}=25.7+10.5+15.47+17.76=69.434$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=12.915 \mathrm{kips}$
V to each cripple wall line $=12.915 / 2=\mathbf{6 . 4 6} \mathbf{k i p s}$

Sill bolts needed in $2 x$ sill along each exterior wall line:
6,457 pounds $/ 820$ pounds/bolt $=\mathbf{8 - 1} / \mathbf{2}$ "bolts or 6,457 pounds $/ 1170$ pounds/bolt $=6-5 / 8$ " bolts 6,457 pounds / 1340 pounds/UFP10 = $\mathbf{5}$ UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity $=$ lineal feet of shear wall based on $16 "$ o.c. stud spacing

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 4.0$ feet $=1,490$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3$ plf OTM $=1,490$ pounds $x 2$ foot wall height $=2,980 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm) $=1,267 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,980-1,267) / 4$ feet $=428$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4’-0" braced panel end studs
Overturning of 2 foot high cripple wall with 4 foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=6,457$ pounds $/ 17.33$ feet x 4.0 feet $=1,490$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \operatorname{psf}\left(2^{\prime}\right)=225 \mathrm{plf}$
OTM $=1,490$ pounds $x 2$ foot wall height $=2,980 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 225$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,430 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,980-2,430) / 4$ feet $=139$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,980$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \operatorname{psf}\left(1.33^{\prime} / 2\right)+5 \operatorname{psf}\left(2.67^{\prime} / 2\right)+10 \operatorname{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$ OTM $=2,980$ pounds $\times 2$ foot wall height $=5,961 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=4,224 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(5,961-4,224) / 8$ feet $=217$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8'-0" braced panel end studs
Overturning of 2 foot high cripple wall with 8 foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,980$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=225 \mathrm{plf}$
OTM $=2,980$ pounds $\times 2$ foot wall height $=5,961 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 225$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=8,100 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(5,961-8,100) / 4$ feet $=$ NO uplift
Overturning of 2 foot high cripple wall with 12 foot minimum panel length along gable end wall:
V to 12 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 12.0$ feet $=4,470$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$ OTM $=4,470$ pounds $\times 2$ foot wall height $=8,941 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (14 foot tributary length $)(12$ foot $/ 2$ moment arm) $=8,870 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(8,941-8,870) / 12$ feet $=\mathbf{6}$ pounds uplift (Neglect)
Overturning of $\mathbf{4}$ foot high cripple wall with 8 foot minimum panel length along gable end wall

V to 8 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,980$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ $\mathrm{OTM}=2,980$ pounds x 4 foot wall height $=11,921 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=4,656 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,921-4,656) / 8$ feet $=\mathbf{9 0 8}$ pounds uplift

Locate two new sill bolts with plate washer within 6 inches of each $8^{\prime}-0$ " panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall

```
V to }8\mathrm{ foot long panel = 6,457 pounds / 17.33 feet x }8.0\mathrm{ feet = 2,980 pounds
w dead load to panel = 14 psf (7.5') + 7 psf (4') + 10 psf (8') + 6 psf (4') = 237 plf
OTM = 2,980 pounds x 4 foot wall height = 11,921 lb-ft
RTM = 0.9 x 237 plf (10 foot tributary length)(8 foot)/2 moment arm) = 8,532 lb-ft
OTM - RTM / panel length = (11,921 - 8,532) / 8 feet = 424 pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8'-0" panel end studs
```

Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 12.0$ feet $=4,470$ pounds w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ $\mathrm{OTM}=4,470$ pounds $\times 4$ foot wall height $=17,882 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (14 foot tributary length)(12 foot) $/ 2$ moment arm) $=9,778 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,882-9,778) / 12$ feet $=\mathbf{6 7 5}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each 12 ' -0 " panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along longitudinal wall
V to 12 foot long panel $=6,457$ pounds $/ 17.33$ feet $x 12.0$ feet $=4,470$ pounds w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=237 \mathrm{plf}$ OTM $=4,470$ pounds x 4 foot wall height $=17,882 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 237$ plf (14 foot tributary length $)(12$ foot) $/ 2$ moment arm $)=17,917 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,882-17,917) / 12$ feet $=$ NO uplift
Overturning of 4 foot high cripple wall with $17^{\prime}-4$ " foot minimum panel length along gable end wall
V to 17 ' -4 " long panel $=6,457$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ $\mathrm{OTM}=6,457$ pounds $\times 4$ foot wall height $=25,829 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (19’-4" tributary length)(17.33 foot) $/ 2$ moment arm) $=19,503 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(25,829-19,503) / 17.33$ feet $=365$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $17^{\prime}-4{ }^{\prime \prime}$ panel end studs (one each side)

Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=6,457$ pounds $/ 450$ pounds per connection $=\mathbf{1 5} \mathbf{L 7 0}$ or A35, or
$V=6,457$ pounds $/ 585$ pounds per connection $=\mathbf{1 1} \mathbf{L 9 0}$ or H10R

```
Transverse Wall Line \(=30\) feet \(=215\) plf
```

Longitudinal Wall Line $=50$ feet $=129$ plf

Case 3B One Story Demand / Capacity Calculations for 30’ x 40’ (1,200 Sq. Ft.) Dead loads (W) tributary to cripple wall level:

Roof/Ceiling: 14 psf (34' x 44') = 20.944 kips
First floor: 7 psf (30×40 ') $=8.4$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 10 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=11.20 \mathrm{kips}$
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 0.75$ kips
Cripple walls $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=\frac{1.68 \mathrm{kips}}{13.63 \mathrm{kips}}$
Interior walls: $12 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \mathrm{x} 3+40^{\prime} \mathrm{x} 2\right)=16.32 \mathrm{kips}$
Sum $W=20.944+8.4+13.63+16.32=59.294 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=11.028 \mathrm{kips}$
V to each cripple wall line $=11.028 / 2=5.51 \mathrm{kips}$
Sill bolts needed in 2 x sill along each exterior wall line:
5,514 pounds / 820 pounds/bolt $=7-\mathbf{1} / \mathbf{2}$ "bolts or 5,514 pounds/ 1,170 pounds/bolt $=5-\mathbf{5 / 8}$ " bolts 5,514 pounds / 1,340 pounds/UFP10 = $\mathbf{5}$ UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity $=$ lineal feet of shear wall based on 16 " o.c. stud spacing $5,514 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{1 4}^{\prime} \mathbf{- 8} \mathbf{8 "}^{\prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=5,514$ pounds $/ 14.67$ feet x 4.0 feet $=1,504$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$ $\mathrm{OTM}=1,504$ pounds $\times 2$ foot wall height $=3,008 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=1,267 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,008-1,267) / 4$ feet $=435$ pounds uplift

Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=5,514$ pounds $/ 14.67$ feet x 4.0 feet $=1,504$ pounds
w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=225 \mathrm{plf}$
OTM $=1,504$ pounds $\times 2$ foot wall height $=3,008 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 225$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,430 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,008-2,430) / 4$ feet $=\mathbf{1 4 4}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:

V to 8 foot long panel $=5,514$ pounds $/ 14.67$ feet x 8.0 feet $=3,008$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$
$\mathrm{OTM}=3,008$ pounds $\times 2$ foot wall height $=6,016 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=4,224 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(6,016-4,224) / 8$ feet $=224$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 8 ' -0 " braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=5,514$ pounds $/ 14.67$ feet x 8.0 feet $=3,008$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=225 \mathrm{plf}$
OTM $=3,008$ pounds $\times 2$ foot wall height $=6,016 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 225$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=8,100 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,016-8,100) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{1 2}$ foot minimum panel length along gable end wall:
V to 12 foot long panel $=5,514$ pounds $/ 14.67$ feet $x 12.0$ feet $=4,512$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$ OTM $=4,512$ pounds $\times 2$ foot wall height $=9,023 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (14 feet tributary length $)(12$ feet $/ 2$ moment arm $)=8,870 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(9,023-8,870) / 12$ feet $=\mathbf{1 3}$ pounds uplift (Neglect)

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall

V to 8 foot long panel $=5,514$ pounds $/ 14.67$ feet $x 8.0$ feet $=3,008$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$
OTM $=3,008$ pounds $x 4$ foot wall height $=12,031 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (10 foot tributary length) (8 foot) $/ 2$ moment arm) $=4,656 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,031-4,656) / 8$ feet $=\mathbf{9 2 2}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each $8^{\prime}-0$ " panel end studs (one each side)

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall

V to 8 foot long panel $=5,514$ pounds $/ 14.67$ feet $x 8.0$ feet $=3,008$ pounds
w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=237 \mathrm{plf}$
OTM $=3,008$ pounds $\times 4$ foot wall height $=12,031 \mathrm{lb}-\mathrm{ft}$

RTM $=0.9 \times 237$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=8,532 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,031-8,532) / 8$ feet $=437$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '- 0 " panel end studs
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{1 2}$ foot minimum panel length along gable end wall
V to 12 foot long panel $=5,514$ pounds $/ 14.67$ feet $x 12.0$ feet $=4,512$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ OTM $=4,512$ pounds $\times 4$ feet wall height $=18,047 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (14 feet tributary length)(12 feet) $/ 2$ moment arm $)=9,778 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,047-9,778) / 12$ feet $=\mathbf{6 8 9}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along longitudinal wall
V to 12 foot long panel $=5,514$ pounds $/ 14.67$ feet x 12.0 feet $=4,512$ pounds
w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=237 \mathrm{plf}$ OTM $=4,512$ pounds $x 4$ feet wall height $=18,047 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 237$ plf (14 feet tributary length $)(12$ feet) $/ 2$ moment arm $)=17,917 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(18,047-17,917) / 12$ feet $=11$ pounds uplift (Neglect)
Overturning of $\mathbf{4}$ foot high cripple wall with 14 ' $-\mathbf{8}^{\prime \prime}$ foot continuous panel length along gable end wall:
V to 14 ' -8 " long panel $=5,514$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ $\mathrm{OTM}=5,156$ pounds $\times 4$ foot wall height $=22,057 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf ($16^{\prime}-8$ " tributary length $)(14.67$ feet $/ 2$ moment arm $)=14,223 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(22,057-14,223) / 14.67$ feet $=533$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of $14^{\prime}-8{ }^{\prime \prime}$ " braced panel end studs
Overturning of 4 foot high cripple wall with 14 ' $-\mathbf{8}^{\prime \prime}$ foot continuous panel length along longitudinal wall:

```
V to \(14^{\prime}-8^{\prime \prime}\) long panel \(=5,514\) pounds w dead load to panel = 14 psf (7.5’) + \(7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=237 \mathrm{plf}\)
OTM \(=5,156\) pounds \(\times 4\) foot wall height \(=22,057 \mathrm{lb}-\mathrm{ft}\)
RTM \(=0.9 \times 237\) plf ( 16 '- -8 " tributary length)( 14.67 feet \(/ 2\) moment arm) \(=26,070 \mathrm{lb}-\mathrm{ft}\)
OTM - RTM \(/\) panel length \(=(22,057-26,070) / 14.67\) feet \(=\) NO uplift
```


Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$V=5,514$ pounds $/ 450$ pounds per connection $=\mathbf{1 3} \mathbf{L 7 0}$ or A35, or
$V=5,514$ pounds / 585 pounds per connection = $\mathbf{1 0} \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=184$ plf
Longitudinal Wall Line $=40$ feet $=138$ plf

Case 3B One Story Demand / Capacity Calculations for $\mathbf{3 6}^{\prime} \mathbf{x} \mathbf{5 6}{ }^{\prime}=\mathbf{2 , 0 1 6}$ square feet.
Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 14 psf (40^{\prime} x 60^{\prime}) $=33.60$ kips
First floor: 7 psf $(36 \times 56$ ' $)=14.11$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall:
Cripple walls

$$
\begin{array}{ll}
\text { Story wall: } & 10 \mathrm{psf}\left(8^{\prime}\right)\left(36^{\prime} \times 2+56^{\prime} \times 2\right)=14.72 \mathrm{kips} \\
\quad \text { Gable end walls: } & 5 \mathrm{psf}\left(6^{\prime} \times 36^{\prime}\right) 2 / 2= \\
\text { Cripple walls } & 6 \mathrm{psf}\left(2^{\prime}\right)\left(36^{\prime} \times 2+56^{\prime} \times 2\right)=\frac{1.08 \mathrm{kips}}{\underline{2.21 \mathrm{kips}}} 18.008 \mathrm{kips}
\end{array}
$$

Interior wall: $\quad 12 \mathrm{psf}\left(8^{\prime}\right)\left(35 '\right.$ x $\left.3+55^{\prime} \times 2\right)=20.64 \mathrm{kips}$
Sum W $=33.6+14.11+18.0+20.64=86.36 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=16.063 \mathrm{kips}$
V to each cripple wall line $=16.063 / 2=8.03$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
8,032 pounds / 820 pounds/bolt = $\mathbf{1 0}-\mathbf{1} / \mathbf{2}^{\prime \prime}$ bolts or
8,032 pounds / 1170 pounds/bolt = $7-\mathbf{5 / 8}$ " bolts
8,032 pounds / 1340 pounds/UFP10 = $\mathbf{6}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing $8,032 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{2 1}{ }^{\prime}-\mathbf{4 \prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=8,032$ pounds $/ 21.33$ feet x 4.0 feet $=1,506$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$
$\mathrm{OTM}=1,506$ pounds $\times 2$ foot wall height $=3,012 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (6 foot tributary length) (4 foot $/ 2$ moment arm) $=1,267 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,012-1,267) / 4$ feet $=\mathbf{4 3 6}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4’-0" braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=8,032$ pounds $/ 21.33$ feet x 4.0 feet $=1,506$ pounds
w dead load to panel $=14 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=246 \mathrm{plf}$
OTM $=1,506$ pounds $\times 2$ foot wall height $=3,012 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 246$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,657 \mathrm{lb}-\mathrm{ft}$

OTM - RTM / panel length = $(3,012-2,657) / 4$ feet $=\mathbf{8 9}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=8,032$ pounds $/ 21.33$ feet $x .0$ feet $=3,012$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$ $\mathrm{OTM}=3,012$ pounds $\times 2$ foot wall height $=6,024 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=4,224 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(6,024-4,224) / 8$ feet $=225$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 8 '- 0 " braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=8,032$ pounds / 21.33 feet $x 8.0$ feet $=3,012$ pounds
w dead load to panel = $14 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=246$ plf
$\mathrm{OTM}=3,012$ pounds $\times 2$ foot wall height $=6,024 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 246$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=8,856 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(6,024-8,856) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with 12 foot continuous panel length along gable end wall:
V to 12 foot long panel $=8,032$ pounds $/ 21.33 \times 12.0$ feet $=4,518$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=117.3 \mathrm{plf}$
OTM $=4,518$ pounds $\times 2$ foot wall height $=9,035 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 117.3$ plf (14 tributary length $)(12$ feet $/ 2$ moment arm) $=8,870 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(9,035-8,870) / 12$ feet $=\mathbf{1 4}$ pounds uplift (Neglect)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=8,032$ pounds $/ 21.33$ feet $x 8.0$ feet $=3,012$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$
$\mathrm{OTM}=3,012$ pounds $\times 4$ foot wall height $=12,047 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=4,656 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,047-4,656) / 8$ feet $=\mathbf{9 2 4}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each end stud of each 8 '-0" panel (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=8,032$ pounds $/ 21.33$ feet $x .0$ feet $=3,012$ pounds
w dead load to panel $=14 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=258 \mathrm{plf}$
OTM $=3,012$ pounds $\times 4$ foot wall height $=12,047 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 258$ plf (10 foot tributary length)(8 foot) $/ 2$ moment arm $)=9,288 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = (12,047-9,288) / 8 feet = 345 pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud at 8 ’- 0 " panels
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end walls

V to 12 foot long panel $=8,032$ pounds $/ 21.33$ feet $x 12.0$ feet $=4,518$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ $\mathrm{OTM}=4,518$ pounds x 4 foot wall height $=18,071 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (14 foot tributary length $)(12$ foot $) / 2$ moment arm $)=9,778 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = ($18,071-9,778$) / 12 feet $=691$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each end stud of each 12' panel (one each side)

Overturning of 4 foot high cripple wall with 12 foot minimum panel length along longitudinal walls

V to 12 foot long panel $=8,032$ pounds $/ 17.33$ feet $x 12.0$ feet $=4,518$ pounds w dead load to panel $=14 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=258 \mathrm{plf}$ $\mathrm{OTM}=4,518$ pounds x 4 foot wall height $=18,071 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 258$ plf (14 foot tributary length $)(12$ foot) $/ 2$ moment arm) $=19,505 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,071-19,505) / 12$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with 16 foot minimum panel length along gable end walls
V to 16 foot long panel $=8,032$ pounds $/ 21.33$ feet $x 16.0$ feet $=6,024$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \operatorname{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$ $\mathrm{OTM}=6,024$ pounds x 4 foot wall height $=24,094 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (18 foot tributary length $)(16$ foot $) / 2$ moment arm $)=16,762 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(24,094-16,762) / 16$ feet $=458$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud of each 16 ' panel
Overturning of 4 foot high cripple wall with 21 ' -4 " foot continuous panel length along gable end walls
V to 21'-4" long panel $=8,034$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=5 \operatorname{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(8^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=129.3 \mathrm{plf}$
$\mathrm{OTM}=8,032$ pounds x 4 foot wall height $=32,126 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 129.3$ plf (23'-4" tributary length)(21.33 foot) $/ 2$ moment arm) $=28,971 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(32,126-28,971) / 21.33$ feet $=\mathbf{1 4 8}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud of each 21'-4" panel

Shear Transfer Along Each Wall Line Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=8,032$ pounds $/ 450$ pounds per connection $=18$ L70 or A35, or
$\mathrm{V}=8,032$ pounds $/ 585$ pounds per connection $=\mathbf{1 4} \mathbf{L 9 0}$ or H10R

```
Transverse Wall Line = 36 feet = 223 plf
Longitudinal Wall Line = 56 feet = 143 plf
```


Case 3C One Story Demand / Capacity Calculations for 30' x 50' (1,500 Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: $1 / 1.4$ Seismic V $=0.186$ W (2001 CBC Equation 30-5)

Dead loads (W) tributary to cripple wall level for 1,500 square feet total floor area:

Roof/Ceiling: 14 psf (34' x 54') = 25.704 kips

First floor: $7 \mathrm{psf}\left(30^{\prime} \mathrm{x} 50\right.$ ') $=10.50$ kips
Exterior Walls:
1st Story walls: $\quad 17 \mathrm{psf}(8 ')(30 ' \mathrm{x} 2+50 ' \mathrm{x} 2)=21.760$ kips
Deduct for windows: $-7 \mathrm{psf}(150$ sq. ft) <-1.05 kips>
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 1.80 \mathrm{kips}$
Cripple walls: $\quad 13.5$ psf (2') (30' x $2+50 ' \times 2) \quad 4.320$ kips
26.830 kips

Interior walls: 12 psf (8') (29' x $3+49 '$ x 2$)=17.76$ kips
Sum W $=25.704+10.5+26.83+17.76=80.794$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=15.028 \mathrm{kips}$
V to each cripple wall line $=15.0-28 / 2=7.51$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
7,514 pounds $/ 820$ pounds/bolt $=10-\mathbf{1} / \mathbf{2}$ 'bolts or
7,514 pounds / 1170 pounds/bolt = $7-5 / 8$ " bolts
7,514 pounds / 1340 pounds/UFP10 = $\mathbf{6}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing 7,514 lbs / 380 plf = 20'-0"

Overturning of 2 foot high cripple wall with 4 foot minimum panel length along gable end wall:
V to 4 foot long panel $=7,514$ pounds $/ 20$ feet x 4.0 feet $=1,503$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=197.7 \mathrm{plf}$
OTM $=1,503$ pounds $\times 2$ foot wall height $=3,005 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 197.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm) $=2,135 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = (3,005-2,135) / 4 feet = 218 pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of 2 foot high cripple wall with 4 foot minimum panel length along longitudinal wall:

V to 4 foot long panel $=7,514$ pounds $/ 20$ feet x 4.0 feet $=1,503$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=296 \mathrm{plf}$
OTM $=1,503$ pounds $x 2$ foot wall height $=3,005 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 296$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm) $=3,197 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,005-3,197) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=7,514$ pounds $/ 20$ feet $x 8.0$ feet $=3,006$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=197.7 \mathrm{plf}$
OTM $=3,006$ pounds $x 2$ foot wall height $=6,011 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 197.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,116 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,011-7,116) / 8$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall

V to 8 foot long panel $=7,514$ pounds $/ 20$ feet $x 8.0$ feet $=3,006$ pounds
${ }^{w}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=224.7 \mathrm{plf}$
$\mathrm{OTM}=3,006$ pounds x 4 foot wall height $=12,022 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 224.7$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm) $=8,089 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,022-8,089) / 8$ feet $=492$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '-0" panel end studs
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=7,514$ pounds $/ 20$ feet $x 8.0$ feet $=3,006$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=323 \mathrm{plf}$
$\mathrm{OTM}=3,006$ pounds x 4 foot wall height $=12,022 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 323$ plf (10 foot tributary length)(8 foot) $/ 2$ moment arm $)=11,628 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,022-11,628) / 8$ feet $=49$ pounds uplift (Neglect)
Overturning of 4 foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=7,514$ pounds $/ 20$ feet x 12.0 feet $=4,508$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=224.7 \mathrm{plf}$ $\mathrm{OTM}=4,508$ pounds x 4 foot wall height $=18,033 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 224.7$ plf (14 foot tributary length) $(12$ foot) $/ 2$ moment arm) $=16,945 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,033-16,985) / 12$ feet $=87$ pounds uplift (perhaps could Neglect)
Locate one new sill bolt with plate washer within 6 inches of each 12 '-0" panel end studs
Overturning of 4 foot high cripple wall with 12 foot minimum panel length along longitudinal wall
V to 12 foot long panel $=7,514$ pounds $/ 20$ feet x 12.0 feet $=4,508$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=323 \mathrm{plf}$
$\mathrm{OTM}=4,508$ pounds x 4 foot wall height $=18,033 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 323$ plf (14 foot tributary length $)(12$ foot) $/ 2$ moment arm $)=24,419 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,033-24,419) / 12$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=7,514$ pounds $/ 450$ pounds per connection $=17 \mathbf{L 7 0}$ or $\mathbf{A 3 5}$, or
$\mathrm{V}=7,514$ pounds $/ 585$ pounds per connection $=13 \mathbf{L 9 0}$ or H10R

```
Transverse Wall Line = 30 feet = 250 plf
Longitudinal Wall Line = 50 feet = 150 plf
```

Case 3C One Story Demand / Capacity Calculations for 30’ x 40’ (1,200 Sq. Ft.) Dead loads (W) tributary to cripple wall level:

Roof/Ceiling: 14 psf (34' x 44') = 20.944 kips
First floor: $7 \mathrm{psf}(30 \times 40$) $=8.4$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+40 '\right.$ x 2$)=19.040$ kips
Deduct for Windows: $\quad-7$ psf (130 sq. ft.) <-0.91 kips>
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ' $2 / 2=\quad 1.80 \mathrm{kips}$
Cripple walls $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=\underline{3.78 \mathrm{kips}}$
23.71 kips

Interior walls: $12 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \mathrm{x} 3+40^{\prime} \mathrm{x} 2\right)=16.32 \mathrm{kips}$
Sum $W=20.944+8.4+23.71+16.32=69.374$ kips
Total $V=(0.186) \mathrm{W}=12.904 \mathrm{kips}$
V to each cripple wall line $=12.904 / 2=6.45 \mathrm{kips}$
Sill bolts needed in $2 x$ sill along each exterior wall line:
6,452 pounds / 820 pounds/bolt = $\mathbf{8}-\mathbf{1} / \mathbf{2}$ "bolts or
6,452 pounds/ 1,170 pounds/bolt $=\mathbf{6}-\mathbf{5 / 8}$ " bolts
6,452 pounds/ 1,340 pounds/UFP10 = $\mathbf{5}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing $6,452 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{1 7}$ '-4"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=6,452$ pounds / 17.33 feet x 4.0 feet $=1,489$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=197.7 \mathrm{plf}$ OTM $=1,489$ pounds $\times 2$ foot wall height $=2,978 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 197.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,135 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,978-2,135) / 4$ feet $=211$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each $4^{\prime}-0^{\prime \prime}$ " braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=6,452$ pounds / 17.33 feet $x .0$ feet $=1,489$ pounds w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=296 \mathrm{plf}$
OTM $=1,489$ pounds $\times 2$ foot wall height $=2,978 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 296$ plf (6 foot tributary length)(4 foot $/ 2$ moment arm) $=3,197 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,978-3,197) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:

V to 8 foot long panel $=6,452$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,978$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=197.7 \mathrm{plf}$ OTM $=1,978$ pounds x 2 foot wall height $=5,955 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 197.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm) $=7,116 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(5,955-7,116) / 4$ feet $=$ NO uplift
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along gable end wall
V to 8 foot long panel $=6,452$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,978$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=224.7 \mathrm{plf}$ $\mathrm{OTM}=2,978$ pounds x 4 foot wall height $=11,911 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 224.7$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=8,088 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,911-8,088) / 8$ feet $=478$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '-0" panel end studs
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=6,452$ pounds $/ 17.33$ feet $x 8.0$ feet $=2,978$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=323 \mathrm{plf}$
$\mathrm{OTM}=2,978$ pounds x 4 foot wall height $=11,911 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 323$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=11,628 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,911-11,628) / 8$ feet $=35$ pounds uplift (Neglect)
Overturning of 4 foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=6,452$ pounds $/ 17.33$ feet $x 12.0$ feet $=4,467$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=224.7 \mathrm{plf}$ $\mathrm{OTM}=4,467$ pounds x 4 foot wall height $=17,866 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 224.7$ plf (14 foot tributary length $)(12$ foot $) / 2$ moment arm $)=16,985 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,866-16,985) / 12$ feet $=74$ pounds uplift (perhaps could Neglect)
Locate one new sill bolt with plate washer within 6 inches of each 12 '-0" panel end studs

Shear Transfer Along Each Wall Line Connection between floor and top of cripple wall or floor and foundation sill plate

$V=6,452$ pounds $/ 450$ pounds per connection $=15 \mathbf{L} 70$ or A35, or $\mathrm{V}=6,452$ pounds $/ 585$ pounds per connection $=11 \mathbf{L 9 0}$ or H10R

```
Transverse Wall Line = 30 feet = 215 plf
Longitudinal Wall Line = 40 feet = 161 plf
```

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 14 psf (40' x 60') = 33.60 kips
First floor: $7 \mathrm{psf}(36 \times 56$ ') $=14.112$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(36 ' \times 2+56^{\prime} \times 2\right)=25.024$ kips
Deduct for windows $-7 \mathrm{psf}(210 \mathrm{sq} . \mathrm{ft}$.) $=<-1.470 \mathrm{kips}>$
Gable end walls: $\quad 12$ psf (6 ' x 36 ') $2 / 2=\quad 2.592$ kips
Cripple walls $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(36^{\prime}\right.$ x $2+56^{\prime}$ x 2$)=4.968$ kips
31.114 kips

Interior wall: 12 psf (8 ') (35 x x 3 + 55' x 2) = 20.64 kips
Sum W $=33.60+14.11+31.11+20.64=99.47$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=18.501 \mathrm{kips}$
V to each cripple wall line $=18.501 / 2=9.25$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
9,250 pounds / 820 pounds/bolt = 12-1/2"bolts or
9,250 pounds / 1170 pounds/bolt $=\mathbf{8 - 5 / 8}$ " bolts
9,250 pounds / 1340 pounds/UFP10 $=7$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing $9,250 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{2 5} \mathbf{\prime} \mathbf{- 4 "}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=9,250$ pounds $/ 25.33$ feet x 4.0 feet $=1,461$ pounds ${ }^{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=197.7 \mathrm{plf}$ $\mathrm{OTM}=1,461$ pounds $\times 2$ foot wall height $=2,921 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 197.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,135 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,921-2,135) / 4$ feet $=197$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=9,250$ pounds $/ 25.33$ feet x 4.0 feet $=1,461$ pounds
w dead load to panel $=14 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=317 \mathrm{plf}$
OTM $=1,461$ pounds $\times 2$ foot wall height $=2,921 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 317$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=3,424 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(2,921-3,424) / 4$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=9,250$ pounds $/ 25.33$ feet $x .0$ feet $=2,921$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=197.7 \mathrm{plf}$ $\mathrm{OTM}=2,921$ pounds $\times 2$ foot wall height $=5,842 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 197.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,116 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = (5,842 - 7,116) / 4 feet = NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=9,250$ pounds $/ 25.33$ feet $x .0$ feet $=2,921$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=224.7 \mathrm{plf}$
$\mathrm{OTM}=2,921$ pounds x 4 foot wall height $=11,685 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 224.7$ plf (10 foot tributary length)(8 foot) $/ 2$ moment arm) $=8,088 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,685-8,088) / 8$ feet $=450$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each end stud of each 8 '-0" panel
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=9,250$ pounds $/ 25.33$ feet $x 8.0$ feet $=2,921$ pounds
w dead load to panel $=14 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=344 \mathrm{plf}$
$\mathrm{OTM}=2,921$ pounds x 4 foot wall height $=11,685 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 344$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=12,384 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,685-12,384) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=9,250$ pounds $/ 25.33$ feet x 12.0 feet $=4,382$ pounds w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=224.7 \mathrm{plf}$ $\mathrm{OTM}=4,382$ pounds x 4 foot wall height $=17,527 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 224.7$ plf (14 foot tributary length $)(12$ foot) $/ 2$ moment arm $)=16,985 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,260-16,985) / 12$ feet $=45$ pounds uplift (Neglect)

Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=9,250$ pounds / 450 pounds per connection $=21$ L70 or A35, or
$\mathrm{V}=9,250$ pounds $/ 585$ pounds per connection $=16 \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=36$ feet $=257$ plf
Longitudinal Wall Line $=56$ feet $=165$ plf

Case 3D One Story Demand / Capacity Calculations for 30' x 50' (1,500 Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: $1 / 1.4$ Seismic V $=0.186$ W (2001 CBC Equation 30-5)

Dead loads (W) tributary to cripple wall level for 1,500 square feet total floor area:

First floor: 7 psf (30^{\prime} x 50 ') $=10.50$ kips
Exterior Walls:
1st Story walls: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime} \times 2+50 '\right.$ x 2$)=21.760 \mathrm{kips}$
Deduct for windows: $-7 \mathrm{psf}(150 \mathrm{sq} . \mathrm{ft}) \quad<-1.05 \mathrm{kips}>$
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ' $2 / 2=\quad 1.80 \mathrm{kips}$
Cripple walls: $\quad 13.5$ psf (2') (30' x $2+50 '$ x 2$) \quad 4.320$ kips
26.830 kips

Interior walls: $12 \mathrm{psf}\left(8^{\prime}\right)\left(29 '\right.$ x $3+49^{\prime}$ x 2$)=17.76$ kips
Sum W $=36.72+10.5+26.83+17.76=91.81$ kips
Total $V=(0.186) \mathrm{W}=17.077 \mathrm{kips}$
V to each cripple wall line $=17.077 / 2=\mathbf{8 . 3 6}$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
8,538 pounds / 820 pounds/bolt = 11-1/2"bolts or
8,538 pounds / 1170 pounds/bolt $=\mathbf{8 - 5 / 8}$ " bolts
8,538 pounds / 1340 pounds/UFP10 $=7$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing $8,538 \mathrm{lbs} / 380 \mathrm{plf}=22^{\prime}-\mathbf{8 \prime \prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=8,538$ pounds $/ 22.67$ feet x 4.0 feet $=1,507$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=203.67 \mathrm{plf}$ OTM $=1,507$ pounds $\times 2$ foot wall height $=3,014 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203.67$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,200 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,014-2,200) / 4$ feet $=203$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=8,538$ pounds / 22.67 feet x 4.0 feet $=1,507$ pounds w dead load to panel = $20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=341 \mathrm{plf}$ OTM $=1,507$ pounds $\times 2$ foot wall height $=3,014 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 341$ plf (6 foot tributary length) (4 foot $/ 2$ moment arm) $=3,683 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,014-3,683) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:

V to 8 foot long panel $=8,538$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,014$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=203.67 \mathrm{plf}$ OTM $=3,014$ pounds $\times 2$ foot wall height $=6,027 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,332 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,027-7,332) / 8$ feet $=$ No uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=8,538$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,014$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.67 \mathrm{plf}$
OTM $=3,014$ pounds x 4 foot wall height $=12,054 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (10 foot tributary length)(8 foot) $/ 2$ moment arm) $=8,304 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,054-8,304) / 8$ feet $=469$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $8^{\prime}-0$ " panel end studs
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall

```
V to 8 foot long panel \(=8,538\) pounds \(/ 22.67\) feet \(x 8.0\) feet \(=3,014\) pounds
w dead load to panel \(=20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368 \mathrm{plf}\)
OTM \(=3,014\) pounds x 4 foot wall height \(=12,054 \mathrm{lb}-\mathrm{ft}\)
RTM \(=0.9 \times 368\) plf ( 10 foot tributary length) \((8\) foot) \(/ 2\) moment arm \()=13,248 \mathrm{lb}-\mathrm{ft}\)
OTM - RTM \(/\) panel length \(=(12,054-13,248) / 8\) feet \(=\) NO uplift
```

Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=8,538$ pounds $/ 22.67$ feet x 12.0 feet $=4,520$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.67 \mathrm{plf}$ OTM $=4,520$ pounds $\times 4$ foot wall height $=18,081 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (14 foot tributary length $)(12$ foot $) / 2$ moment arm $)=17,438 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,081-17,438) / 12$ feet $=53$ pounds uplift (Neglect)

Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=8,538$ pounds $/ 450$ pounds per connection $=19 \mathbf{L 7 0}$ or A35, or
$\mathrm{V}=8,538$ pounds $/ 585$ pounds per connection $=15 \mathbf{L 9 0}$ or H10R

Transverse Wall Line $=30$ feet $=285$ plf

Longitudinal Wall Line $=50$ feet $=171$ plf

Case 3D One Story Demand / Capacity Calculations for 30’ x 40’ (1,200 Sq. Ft.)
Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 20 psf (34' x 44') = 29.92 kips
First floor: 7 psf (30×40 ') $=8.4$ kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(30^{\prime}\right.$ x $2+40^{\prime}$ x 2$)=19.040$ kips
Deduct for Windows: -7 psf (130 sq. ft.) <-0.91 kips>

Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ' $2 / 2=\quad 1.80$ kips
Cripple walls $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30 ' \mathrm{x} 2+40^{\prime} \mathrm{x} 2\right)=\underline{3.78 \mathrm{kips}}$
23.71 kips

Interior walls: 12 psf (8') (30' x $\left.3+40^{\prime} \times 2\right)=16.32$ kips
Sum $\mathrm{W}=29.92+8.4+23.71+16.32=78.35 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=14.573 \mathrm{kips}$
V to each cripple wall line $=14.573 / 2=7.29$ kips
Sill bolts needed in $2 x$ sill along each exterior wall line:
7,287 pounds $/ 820$ pounds/bolt $=9-\mathbf{1} / \mathbf{2}^{\prime \prime}$ bolts or
7,287 pounds/ 1,170 pounds/bolt = $7-\mathbf{5 / 8}$ " bolts
7,287 pounds/ 1,340 pounds/bolt = $\mathbf{6}$ UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing 7,287 lbs / 380 plf = 20'-0"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=7,287$ pounds $/ 20$ feet x 4.0 feet $=1,457$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \operatorname{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=203.67 \mathrm{plf}$ $\mathrm{OTM}=1,457$ pounds x 2 foot wall height $=2,915 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,200 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,915-2,200) / 4$ feet $=\mathbf{1 7 8}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel
Overturning of 2 foot high cripple wall with 4 foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=7,287$ pounds $/ 20$ feet $x 4.0$ feet $=1,457$ pounds w dead load to panel $=20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=341 \mathrm{plf}$ OTM $=1,457$ pounds $x 2$ foot wall height $=2,915 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 341$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=3,683 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,915-3,683) / 4$ feet $=$ NO uplift

Overturning of 2 foot high cripple wall with 8 foot minimum panel length along gable end wall:
V to 8 foot long panel $=7,287$ pounds $/ 20$ feet $x 8.0$ feet $=2,915$ pounds ${ }_{\mathrm{w}}$ dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=203.67 \mathrm{plf}$ OTM $=2,915$ pounds $\times 2$ foot wall height $=5,829 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,332 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(5,829-7,332) / 8$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with 8 foot minimum panel length along gable end wall:

V to 8 foot long panel $=7,287$ pounds $/ 20$ feet $x 8.0$ feet $=2,915$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.67 \mathrm{plf}$
$\mathrm{OTM}=2,915$ pounds x 4 foot wall height $=11,658 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=8,304 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,658-8,304) / 8$ feet $=419$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 8 '- 0 " braced panel
Overturning of $\mathbf{4}$ foot high cripple wall with 8 foot minimum panel length along longitudinal wall:
V to 8 foot long panel $=7,287$ pounds $/ 20$ feet $x .0$ feet $=2,915$ pounds
w dead load to panel $=20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368 \mathrm{plf}$
OTM $=2,915$ pounds x 4 foot wall height $=11,658 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 368$ plf (10 foot tributary length) (8 foot $/ 2$ moment arm) $=13,248 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,658-13,248) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{1 2}$ foot minimum panel length along gable end wall:
V to 12 foot long panel $=7,287$ pounds $/ 20$ feet x 12.0 feet $=4,372$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.67 \mathrm{plf}$
$\mathrm{OTM}=4,372$ pounds $\times 4$ foot wall height $=17,488 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (14 foot tributary length)(12 foot $/ 2$ moment arm) $=17,438 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(17,488-17,438) / 12$ feet $=\mathbf{4}$ pounds uplift (Neglect)

Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$\mathrm{V}=7,287$ pounds / 450 pounds per connection = $\mathbf{1 7} \mathbf{L 7 0}$ or $\mathbf{A 3 5}$, or
$\mathrm{V}=7,287$ pounds $/ 585$ pounds per connection $=\mathbf{1 3} \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=\mathbf{2 4 3}$ plf
Longitudinal Wall Line $=40$ feet $=182$ plf

Case 3D One Story Demand / Capacity Calculations for $\mathbf{3 6}^{\prime} \mathbf{x} 56$ ' = 2,016 square feet.

Dead loads (W) tributary to cripple wall level:
Roof/Ceiling: 20 psf (40' x 60') $=48.00$ kips
First floor: 7 psf ($36 \times 56^{\prime}$) = 14.112 kips
Exterior Walls:
$1^{\text {st }}$ Story wall: $\quad 17 \mathrm{psf}\left(8^{\prime}\right)\left(36^{\prime} \times 2+56^{\prime} \times 2\right)=25.024 \mathrm{kips}$
Deduct for windows $-7 \mathrm{psf}(210 \mathrm{sq} . \mathrm{ft}$.) $=<-1.470 \mathrm{kips}>$
Gable end walls: $\quad 12$ psf ($\left.6^{\prime} \times 36^{\prime}\right) 2 / 2=$
2.592 kips

Cripple walls $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(36^{\prime} \times 2+56^{\prime} \times 2\right)=4.968 \mathrm{kips}$ 31.114 kips

Interior wall: $12 \mathrm{psf}\left(8^{\prime}\right)(35 '$ x $3+55 '$ x 2$)=20.64 \mathrm{kips}$
Sum W $=48.00+14.11+31.11+20.64=113.87$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=21.179 \mathrm{kips}$
V to each cripple wall line $=21.179 / 2=\mathbf{1 0 . 5 9} \mathbf{~ k i p s}$
Sill bolts needed in $2 x$ sill along each exterior wall line:
10,590 pounds / 820 pounds/bolt = $\mathbf{1 3} \mathbf{- 1 / 2 " b o l t s ~ o r ~}$
10,590 pounds / 1170 pounds/bolt $=\mathbf{9 - 5 / 8}$ " bolts
10,590 pounds / 1340 pounds/UFP10 = $\mathbf{8}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of shear wall based on 16 " o.c. stud spacing $10,590 \mathrm{lbs} / 380 \mathrm{plf}=\mathbf{2 8} \mathbf{\prime} \mathbf{- 0 \prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=10,590$ pounds $/ 28$ feet x 4.0 feet $=1,513$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=203.7 \mathrm{plf}$ OTM $=1,513$ pounds $\times 2$ foot wall height $=3,026 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,200 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,026-2,200) / 4$ feet $=206$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of both end studs of each 4'-0" braced panel
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=10,590$ pounds $/ 28$ feet x 4.0 feet $=1,513$ pounds w dead load to panel $=20 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=371 \mathrm{plf}$
OTM $=1,512$ pounds $\times 2$ foot wall height $=3,026 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 371$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=4,007 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,026-4,007) / 4$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=10,590$ pounds $/ 28$ feet $x 8.0$ feet $=3,026$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=203.7 \mathrm{plf}$ OTM $=3,026$ pounds $\times 2$ foot wall height $=6,051 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 203.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,332 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(6,051-7,332) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=10,590$ pounds $/ 28$ feet x 8.0 feet $=3,026$ pounds w dead load to panel = $20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.7 \mathrm{plf}$ OTM $=3,026$ pounds x 4 foot wall height $=12,103 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=8,304 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,103-8,304) / 8$ feet $=475$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '-0" braced panel end studs

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall:

V to 8 foot long panel $=10,590$ pounds $/ 28$ feet $x 8.0$ feet $=3,026$ pounds
w dead load to panel $=20 \mathrm{psf}\left(9^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=398 \mathrm{plf}$
$\mathrm{OTM}=3,026$ pounds x 4 foot wall height $=12,103 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 398$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=14,328 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,103-14,328) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{1 2}$ foot minimum panel length along gable end wall:
V to 12 foot long panel $=10,590$ pounds $/ 28$ feet $\times 12.0$ feet $=4,539$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.7 \mathrm{plf}$
$\mathrm{OTM}=4,539$ pounds x 4 foot wall height $=18,154 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (14 foot tributary length $)(12$ foot $/ 2$ moment arm) $=17,438 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,154-17,438) / 12$ feet $=60$ pounds uplift (Perhaps could Neglect)
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs
Overturning of 4 foot high cripple wall with 16 foot minimum panel length along gable end wall:
V to 16 foot long panel $=10,590$ pounds $/ 28$ feet $x 16.0$ feet $=6,051$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+7 \mathrm{psf}\left(1.33^{\prime} / 2\right)=12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(8^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=230.7 \mathrm{plf}$
$\mathrm{OTM}=6,051$ pounds x 4 foot wall height $=24,206 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 230.7$ plf (18 foot tributary length $)(16$ foot $/ 2$ moment arm $)=29,894 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(24,206-29,894) / 12$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line
 Connection between floor and top of cripple wall or floor and foundation sill plate

$V=10,590$ pounds $/ 450$ pounds per connection $=24 \mathbf{L 7 0}$ or $\mathbf{A 3 5}$, or
$\mathrm{V}=10,590$ pounds $/ 585$ pounds per connection $=18 \mathrm{~L} 90$ or $19 \mathrm{H10R}$
Transverse Wall Line $=36$ feet $=292$ plf
Longitudinal Wall Line $=56$ feet $=188$ plf

Shear Transfer to Cripple Walls of One Story Buildings

Shear transfer capacity from the first floor into the cripple wall top plate from existing blocking or rim joist (along longitudinal wall lines), or end joist (along transverse wall lines) are determined below.

Along longitudinal walls, floor joists are assumed to be perpendicular and spaced at 16 inches o.c. If existing connections using 8d common toenails at 8 inches on center (two per joist space) exist between the rim joist or blocking, and the cripple wall top plate or foundation sill plate, that connection capacity would equal: Per 16 inch joist space: 2 nails x $5 / 6$ (for toenails) x 76 pounds (8 d common nails) x $1.33=168$ pounds

168 pounds $\mathbf{x} 12$ / 16 feet $=126$ plf capacity
This capacity does not count the two toenails normally connecting each joist to the cripple wall top plate. If only one of these toenails per joist are accounted for, the capacity along the longitudinal wall would equal: Per 16 inch joist space x 1 nail x 76 pounds/nail x $5 / 6 \times 1.33=84$ pounds x $12 / 16=63$ plf
$\mathbf{1 2 6}+\mathbf{6 3}$ pounds $\mathbf{1 8 9}$ plf > $\mathbf{1 8 8}$ plf maximum demand at Case 3D ($\mathbf{2 0 0 0}$ sq. ft.)

Because toe nails can be difficult to observe and can be ineffective if the wood framing has split at the nails, existing nailing described above may be either absent or ineffective. Also, the current code prohibits the use of toe nails for shear transfer greater than 150 plf. Therefore, because this load path is essential, the shear transfer demand should be accommodated by adding sheet metal angles.

Along transverse walls, if existing 8d toe nailing at 6 inches o.c. is assumed it provides only 168 plf. The demand along the transverse walls exceeds this amount in all Cases except for Case 3 A (1200 sq. ft) Therefore, adding sheet metal angles is necessary along transverse walls.

With respect to the ability of existing floor sheathing nailing to transfer shear into the top of the blocking or rim joist member the following analysis is provided:

Along the transverse walls where joists are assumed to be parallel to the wall, the ends of the floor sheathing boards should be nailed to that joist. Assuming 1x 6 straight sheathing with 2 - 8d nails each board, these wall lines should have 4 nails per foot assuming 6 inch wide boards. The capacity provided is 90 pounds per nail x 4 nails x $1.33=478$ plf capacity. Therefore no supplemental connection between the upper edge of the rim or blocking, and the floor sheathing should be necessary for the maximum 292 plf transverse direction demand of Case 3D (2000 sq. ft.). If the floor sheathing is plywood a lower capacity should be assumed. The typical plywood edge nailing is 8d @ 6"o.c. which gives 76 pounds x 2 nails/ft. x $1.33=202$ plf. Adding in the 16d sill plate nailing assumed at 16 " o.c. through the sheathing to the end joist would add 141 pounds $\times(0.77 \mathrm{Cd}) \times 1.33$ $(12 / 16)=109$ plf, for a total of 311 plf. This still exceeds the maximum demand of 292 plf.

The longitudinal direction demand is a maximum of 188 plf for Case 3D (2000 sq. ft.). In this case 8d nails from the sheathing into the rim member should occur at 16 inches on center. This corresponds to each sheathing board being nailed to each rim member at the same spacing as the perpendicular joists. In addition, the first story wall sill plate should be nailed into the rim member with 20 d (or perhaps larger nails) at 32 inches on center (one every other stud bay). The combined capacity for both types of nails is: 90 pounds $\times 1.33 \times(12 / 16)+170$ pounds $(0.705 \mathrm{Cd}) \times 1.33(12 / 32)=150$ plf. This capacity is about $7-10 \%$ less than the demand for the Case 3C small and large footprint houses and ranges from $14-25 \%$ less than the demand for the Case 3D houses.

Conclusions about shear transfer from floor to cripple wall in One-Story Buildings:

1) No supplemental connection between the floor sheathing and the top edge of blocking or rim joist should be necessary in a one story condition, even though along longitudinal walls the assumed capacity is less than the demand in some Cases.
2) Sheet metal angles should be provided between the bottom edge of joists or blocking and the top plate or foundation sill plate.

Cripple Wall Top Plate used as a Collector in One Story Buildings

Where an existing cripple wall uses a single top plate, or has a double top plate constructed without a standard lap splice as required by the code (e.g., 4 foot lap with $8-16 \mathrm{~d}$ nails) these conditions may create a weak link in a top plate being used as a collector between widely spaced retrofit braced wall segments. The collector force along the longitudinal walls (where joists are assumed perpendicular) varies from 103 plf to 188 plf . For the case of the $2,016 \mathrm{sq} . \mathrm{ft}$. building with a 56 foot long wall where a total of 28 feet of bracing is provided, if this bracing is located in two sections only at each end of the wall, the collector length will be one half of the distance between the two 14 foot long braced segments. For this case, the maximum force demand along this collector occurs where it connects to the braced sections of the cripple wall, and is determined below:
(56 feet -28 feet) $/ 2 \times 188$ plf $=\mathbf{2 , 6 3 2}$ pounds
The actual connection force will be proportionally less by 188 pounds per foot, where the butt joint occurs further away from the end of the braced panel and closer to the mid length of the wall. If braced panels are distributed along the length of the wall, rather than concentrated at the ends only, the splice connection force is also reduced, such that the maximum demand for this example is 188 plf times one-half the distance in feet between the braced
wall ends. Where a top plate butt joint occurs within the length of a braced panel the sheathing nailing will also aid in providing a splice. However, the code does not permit using sheathing as a method of providing a collector splice, therefore wherever a top plate butt joint occurs it should be provided with a positive connection between the two pieces (2001 CBC Sec. 2315.5.2)

A splice connection for a 2,632 pound demand could to be made with bolts or nails. A bolted connection could be provided by installing a $4-1 / 2$ " bolts vertically through a single 2 x top plate on each side of the butt joint, using a 16 inch long $\frac{1}{4}$ inch thick plate with bolts located 4 inches minimum from the butt joint and spaced 2.5 inches on center. An alternative splice could be made with an 18 gage strap nailed into the vertical face of the top plate having a total of 36-16d sinker nails. To prevent splitting, nails should be staggered and spaced not less than 1$1 / 2$ inches apart. Commercially available straps with the necessary capacity would require that blocking be installed below the existing plate to allow for a second row of nails. The blocking would also need to be attached to the top plate with 16 - 10d common nails along the length of the strap.

For the 36 foot long transverse wall, the maximum collector force is 288 plf for the Case 3D (2000 sq . ft.) house, and its maximum length is $\left(36^{\prime}-28^{\prime}\right) / 2=4.0$ feet, therefore the force is 1,060 pounds. Along the transverse walls, the parallel end joist should be connected to the top plate as described above with L70 or equivalent angles, therefore a continuous joist should be able to act as the splice member for a single top plate IF the end butt joint of the top plate and end joint of the joist are offset, and the quantity of L70 angles on each side can provide the needed splice capacity. Where end joints in both the joist and a single top plate occur in close proximity, an additional splice connection of the top plate should be provided.

Conclusions about splices for single top plates of cripple walls.

The actual force at a splice of a single top plate in a cripple wall can vary greatly depending on the location of the splice with respect to the layout of the bracing panels along the wall. The code's prescriptive double top plate splice for conventional construction provides a seismic tension capacity of $\mathbf{1 , 5 0 0}$ pounds and therefore a retrofit code should likely prescribe a similar capacity connection. This would most easily be provided by an 30 inch long 18 gage strap with 22 - 10d full length nails to provide that capacity, such as a Simpson LSTA or MSTA, nailed to the vertical face of the top plate.

Overturning Considerations for One-Story Buildings

The overturning calculations provided for each Case assume a lateral force within each braced panel that is directly proportional to its length as a fraction of the overall minimum length of bracing to be provided. For example if the total lateral load to a wall line is 7,600 pounds and the minimum bracing length is 20 feet, each 8 foot long panel section of bracing will be loaded with $(7,600 / 20) \times 8=3,040$ pounds.

Dead load resistance to overturning is based on the unit weights for the various floor, roof and wall assembles assumed for each Case, and the tributary area supported by the cripple wall. For roof loads tributary to a wall no roof overhang is assumed. For the longitudinal walls the width of roof tributary to the exterior walls is 7 ' -6 " for the 30 foot wide houses and 9 feet for the 36 foot wide house. These distances are based on one-quarter of the rafter span to the ridge, and are predicated on a purlin support being present at the halfway span of the rafter between the exterior wall and the roof ridge line. The width of first floor tributary to the longitudinal walls is 4 feet, based on an 8 -foot span of floor joists to the first interior line of girders. Typically, the wall length resisting overturning is assumed to be 2 feet longer than the length of the braced wall panel. For example, a 4 -foot long braced panel is assumed to engage 6 feet of tributary length for overturning resistance.

Because each individual braced wall length must be at least twice the cripple wall height, a maximum 4-foot height wall requires an 8 -foot minimum bracing panel length. This requirement intends to reduce the uplift forces
imposed by overturning. However, based on the calculations, net uplift will occur, particularly along the transverse gable end walls and even along the longitudinal (bearing) walls in the Cases having a lightweight roof.

Conclusions about uplift restraint for cripple walls of One-story house:

For 4 " -0 " tall walls having 8 '- -0 " long braced panels, net uplift forces of up to 1000 pounds (ASD) are calculated to occur. In other cases the net uplift is 500 pounds or less. For these fairly small uplift forces, the use of foundation sill plate anchor bolts with plate washers could be utilized as restraint, based on the following. For example a $1 / 2$ " diameter Kwik Bolt with $3-1 / 2$ " embed and $3-1 / 2$ " edge distance (20% redcution) has a tension capacity without special inspection of 700 pounds in 2000 psi concrete. Wedge-All anchors have smaller values of 532 pounds for $1 / 2$ " diameter without special inspection and assuming a $3-1 / 2$ inch edge distance for 2000 psi concrete. The minimum edge distances will require placing the bolts approximately 1 inch from the centerline of a 2×6 nominal sill plate. This would preclude the use of a flush cut sill method because the bolt would be too close to the edge of the cut face of the sill plate. A threaded rod installed with epoxy would be an alternative where an edge distance less than $3-1 / 2$ inches is used.

For uplifts between zero and 550 pounds, a single expansion anchor bolt with plate washer could be located within 6 inches of the stud at each braced panel segment. Plate washers in this case should be wider and thicker than the minimum $2 \times 2 \times 3 / 16$ inch typical plate washer to provide the uplift resistance. On a 2×6 nominal sill plate with the anchor bolt offset from the center of the sill plate by 1 inch a $5 \times 5 \times 3 / 8$ inch washer with a 2 inch long diagonal slot is recommended.

For uplifts between 550 and 1000 pounds, a pair of sill anchorage expansion anchor bolts with plate washers could be used to resist this uplift. One bolt could be located within 6 inches of each side of the stud at each end of each brace d panel segment. Alternatively, an FJA / FSA type strap nailed to the end stud and bolted into the face of the foundation stem wall could be used for forces up to $\mathbf{1 0 0 0}$ pounds.

Case 3A Two Story Demand / Capacity for $30 \mathrm{ft} x 40 \mathrm{ft}(\mathbf{2 , 4 0 0}$ Sq. Ft.)
Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: 1 / 1.4 Seismic V $=0.186 \mathrm{~W}$

Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 11 psf (34' x 44') = 16.456 kips
Second Floor: 9 psf (30^{\prime} x 40') = 10.80 kips First floor: $7 \mathrm{psf}\left(30^{\prime}\right.$ x $\left.40^{\prime}\right)=8.40$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 8 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=17.92 \mathrm{kips}$
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ' $2 / 2=\quad 0.75 \mathrm{kips}$
Cripple walls: $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \mathrm{x} 2+40^{\prime} \mathrm{x} 2\right)=1.68 \mathrm{kips}$
20.35 kips

Interior wall: $8 \mathrm{psf}\left(8^{\prime}\right)\left(29 ' \mathrm{x} 5+39^{\prime} \mathrm{x} 3\right)=16.768 \mathrm{kips}$
Sum W $=16.46+10.8+8.4+20.35+16.77=72.77$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=13.536 \mathrm{kips}$
V to each cripple wall line $=13.536 / 2=6.77$ kips

Number of sill bolts needed along any wall:
6,768 pounds / 820 pounds/bolt = $9-\mathbf{1} / \mathbf{2}$ " bolts
6,768 pounds $/ 1170$ pounds/bolt $=\mathbf{6}-\mathbf{5 / 8}$ " bolts
6,768 pounds / 1340 pounds/UFP10 $=\mathbf{6}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 " stud spacing 6,768 pounds / 380 plf = 18’-8"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=6,768$ pounds / 18.67 feet x 4.0 feet $=1,450$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=168.3 \mathrm{plf}$ $\mathrm{OTM}=1,450$ pounds $\times 2$ foot wall height $=2,900 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 168.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=1,818 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,900-1,818) / 4$ feet $=271$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:

V to 4 foot long panel $=6,768$ pounds $/ 18.67$ feet x 4.0 feet $=1,450$ pounds
w dead load to panel = $11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+9 \mathrm{psf}\left(7.5^{\prime}\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=318 \mathrm{plf}$
OTM $=1,450$ pounds $\times 2$ foot wall height $=2,900 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 318$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=3,434 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(2,900-3,434) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=6,768$ pounds $/ 18.67$ feet $x 8.0$ feet $=2,900$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=168.3 \mathrm{plf}$ $\mathrm{OTM}=2,900$ pounds $\times 2$ foot wall height $=5,801 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 168.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=6,060 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(5,801-6,060) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=6,768$ pounds $/ 18.67$ feet x 8.0 feet $=2,900$ pounds w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ OTM $=2,900$ pounds $\times 4$ foot wall height $=11,602 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=6,492 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(11,602-6,492) / 8$ feet $=\mathbf{6 3 9}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each 8 '-0" panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=6,768$ pounds $/ 18.67$ feet x 8.0 feet $=2,900$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+9 \mathrm{psf}\left(7.5^{\prime}\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=330 \mathrm{plf}$
OTM $=2,900$ pounds $\times 4$ foot wall height $=11,602 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 330$ plf (10 foot tributary length)(8 foot) $/ 2$ moment arm) $=11,880 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,602-11,880) / 8$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=6,768$ pounds $/ 18.67$ feet x 12.0 feet $=4,351$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.333^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ OTM $=4,351$ pounds $x 4$ feet wall height $=17,403 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (14 feet tributary length)(12 feet) $/ 2$ moment arm) $=13,633 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(17,403-13,633) / 12$ feet $=314$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs
Overturning of $\mathbf{4}$ foot high cripple wall with 16 foot minimum panel length along gable end wall
V to 12 foot long panel $=6,768$ pounds $/ 18.67$ feet $x 16.0$ feet $=5,801$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ OTM $=5,801$ pounds $\times 4$ feet wall height $=23,205 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (18 feet tributary length $)(16$ feet) $/ 2$ moment arm $)=23,371 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(23,205-23,371) / 16$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=6,768$ pounds / 450 pounds per connection $=\mathbf{1 5} \mathbf{L 7 0}$ or A35, or
$V=6,768$ pounds / 585 pounds per connection = $\mathbf{1 1} \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=226$ plf
Longitudinal Wall Line $=40$ feet $=169$ plf

Case 3A Two Story Demand / Capacity for $30 \mathrm{ft} \mathbf{x} 30 \mathrm{ft}(1,800 \mathrm{Sq}$. Ft.)

Dead loads (W) tributary to cripple wall level for 1,800 square feet:
Roof/Ceiling: 11 psf ($34^{\prime} \times 34^{\prime}$) $=12.716$ kips
Second Floor: 9 psf $\left(30^{\prime} \times 30^{\prime}\right)=8.10$ kips First floor: $7 \mathrm{psf}\left(30^{\prime} \times 30\right.$ ' $)=6.30$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 8 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=15.36$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 0.75 \mathrm{kips}$
Cripple walls: $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+30 ' \times 2\right)=\frac{1.44 \mathrm{kips}}{17.55 \mathrm{kips}}$
Interior wall: $8 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \times 5+29^{\prime} \times 3\right)=14.848 \mathrm{kips}$
Sum W $=12.72+8.10+6.30+17.55+14.85=59.51$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=11.070 \mathrm{kips}$
V to each cripple wall line $=11.070 / 2=5.535 \mathrm{kips}$
Number of sill bolts needed along any wall:
5,535 pounds / 820 pounds/bolt = $7 \mathbf{- 1 / 2 "}$ bolts
5,535 pounds / 1170 pounds/bolt = $\mathbf{5 - 5 / 8}$ " bolts
5,535 pounds / 1340 pounds/UFP10 = $\mathbf{5}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=5,535$ pounds / 14.67 feet $x 4.0$ feet $=1,510$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=168.3 \mathrm{plf}$
$\mathrm{OTM}=1,510$ pounds $\times 2$ foot wall height $=3,019 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 168.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=1,818 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length = (3,019 - 1,818) / 4 feet = $\mathbf{3 0 0}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=5,535$ pounds $/ 14.67$ feet $x 4.0$ feet $=1,510$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+9 \mathrm{psf}\left(7.5^{\prime}\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=318 \mathrm{plf}$
$\mathrm{OTM}=1,510$ pounds $\times 2$ foot wall height $=3,019 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 318$ plf (6 foot tributary length) (4 foot $/ 2$ moment arm) $=3,434 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,019-3,434) / 4$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:
V to 8 foot long panel $=5,535$ pounds $/ 14.67$ feet $x 8.0$ feet $=3,019$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=168.3 \mathrm{plf}$ OTM $=3,019$ pounds $\times 2$ foot wall height $=6,038 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 168.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=6,060 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,038-6,060) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=5,535$ pounds $/ 14.67$ feet x 8.0 feet $=3,019$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$
OTM $=3,019$ pounds $\times 4$ foot wall height $=12,076 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=6,492 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,076-6,492) / 8$ feet $=\mathbf{6 9 8}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each $8^{\prime}-0$ " panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=5,535$ pounds $/ 14.67$ feet x 8.0 feet $=3,019$ pounds w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+9 \mathrm{psf}\left(7.5^{\prime}\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=330 \mathrm{plf}$
OTM $=3,019$ pounds $x 4$ foot wall height $=12,076 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 330$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=11,880 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,076-11,880) / 8$ feet $=25$ pounds uplift (Neglect)
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=5,535$ pounds / 14.67 feet x 12.0 feet $=4,529$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$
OTM $=4,529$ pounds $\times 4$ feet wall height $=18,115 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (14 feet tributary length)(12 feet $/ 2$ moment arm) $=13,633 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(18,115-13,633) / 12$ feet $=373$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs
Overturning of 4 foot high cripple wall with 14 ' $\mathbf{- 8 \prime \prime}$ continuous panel length along gable end wall

V to 14 '-8" foot long panel $=5,535$ pounds ${ }_{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ OTM $=5,535$ pounds x 4 feet wall height $=22,140 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9$ x 180.3 plf (16.67 feet tributary length $)(14.67$ feet $/ 2$ moment arm $)=19,837 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(22,140-19,837) / 14.67$ feet $=157$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 14 '-8" braced panel end studs

Shear Transfer Along Each Wall Line

$\mathrm{V}=5,535$ pounds $/ 450$ pounds per connection $=13 \mathbf{L 7 0}$ or A35, or
$\mathrm{V}=5,535$ pounds $/ 585$ pounds per connection $=\mathbf{1 0} \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=185$ plf
Longitudinal Wall Line $=30$ feet $=185$ plf

Case 3A Two Story Demand / Capacity for $30^{\prime} \times 50^{\prime}=3,000$ square feet

Dead loads (W) tributary to cripple wall level for 3,000 square feet:
Roof/Ceiling: 11 psf (34' x 54') = 20.196 kips
Second Floor: 9 psf $\left(30^{\prime} \times 50^{\prime}\right)=13.50$ kips First floor: 7 psf $\left(30^{\prime} \times 50^{\prime}\right)=10.50$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $8 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+50 '\right.$ x 2$)=20.48$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=0.75 \mathrm{kips}$
Cripple walls: 6 psf (2') $\left(30^{\prime} \times 2+50 ' \times 2\right)=1.92$ kips
23.15 kips

Interior wall: 8 psf (8') (29' x $5+49 '$ x 3$)=18.688$ kips
Sum $W=20.20+13.50+10.50+23.15+18.69=86.03$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=16.002 \mathrm{kips}$
V to each cripple wall line $=16.002 / 2=8.00$ kips
Number of sill bolts needed along any wall:
8,001 pounds $/ 820$ pounds/bolt $=10-\mathbf{1} / \mathbf{2}^{\prime \prime}$ bolts
8,001 pounds $/ 1170$ pounds/bolt $=7-5 / 8$ " bolts
8,001 pounds / 1340 pounds/UFP10 = 6 UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing 8,001 pounds $/ 380$ plf $=21$ ' -4 "

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=8,001$ pounds $/ 21.33$ feet x 4.0 feet $=1,500$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=168.3 \mathrm{plf}$ OTM $=1,500$ pounds $\times 2$ foot wall height $=3,000 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 168.3$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=1,818 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,000-1,818) / 4$ feet $=296$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:

V to 4 foot long panel $=8,001$ pounds $/ 21.33$ feet x 4.0 feet $=1,500$ pounds
w dead load to panel $=11 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+9 \mathrm{psf}\left(7.5^{\prime}\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=318 \mathrm{plf}$
OTM $=1,500$ pounds $x 2$ foot wall height $=3,000 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 318$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=3,434 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,000-3,434) / 4$ feet $=$ NO uplift

Overturning of 2 foot high cripple wall with 8 foot minimum panel length along gable end wall:
V to 8 foot long panel $=8,001$ pounds $/ 21.33$ feet $x 8.0$ feet $=3,000$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=168.3 \mathrm{plf}$
$\mathrm{OTM}=3,000$ pounds x 2 foot wall height $=6,001 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 168.3$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=6,060 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,001-6,060) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=8,001$ pounds $/ 21.33$ feet $x 8.0$ feet $=3,000$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ $\mathrm{OTM}=3,000$ pounds x 4 foot wall height $=12,002 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=6,492 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,002-6,492) / 8$ feet $=\mathbf{6 8 9}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each 8 '-0" panel end studs (one each side)
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=8,001$ pounds $/ 21.33$ feet $x 8.0$ feet $=3,000$ pounds
w dead load to panel $=11 \operatorname{psf}\left(7.5^{\prime}\right)+7 \operatorname{psf}\left(4^{\prime}\right)+9 \operatorname{psf}\left(7.5^{\prime}\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=330 \mathrm{plf}$
$\mathrm{OTM}=3,000$ pounds x 4 foot wall height $=12,002 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 330$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=11,880 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,002-11,880) / 8$ feet $=15$ pounds uplift (Neglect)
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=8,001$ pounds $/ 21.33$ feet $x 12.0$ feet $=4,501$ pounds ${ }_{\mathrm{w}}$ dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ $\mathrm{OTM}=4,501$ pounds $\times 4$ feet wall height $=18,002 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf (14 feet tributary length)(12 feet) $/ 2$ moment arm) $=13,633 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,002-13,633) / 12$ feet $=364$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs

Overturning of $\mathbf{4}$ foot high cripple wall with 16 foot minimum panel length along gable end wall

V to 12 foot long panel $=8,001$ pounds $/ 21.33$ feet $x 16.0$ feet $=6,001$ pounds
w dead load to panel $=11 \mathrm{psf}\left(1^{\prime}\right)+(9 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+8 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=180.3 \mathrm{plf}$ $\mathrm{OTM}=6,001$ pounds x 4 feet wall height $=24,003 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 180.3$ plf $(18$ feet tributary length $)(16$ feet $) / 2$ moment arm $)=23,371 \mathrm{lb}-\mathrm{ft}$

OTM - RTM / panel length $=(24,003-23,271) / 16$ feet $=40$ pounds uplift (Neglect)

Shear Transfer Along Each Wall Line

$\mathrm{V}=8,001$ pounds / 450 pounds per connection = $\mathbf{1 8} \mathbf{L 7 0}$ or A35, or
$\mathrm{V}=8,001$ pounds $/ 585$ pounds per connection $=14 \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=267$ plf
Longitudinal Wall Line $=\mathbf{5 0}$ feet $=\mathbf{1 6 0}$ plf

Case 3B Two Story Demand / Capacity for 30 ft x 40 ft (2,400 Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: 1 / 1.4 Seismic V $=0.186 \mathrm{~W}$

Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 14 psf (34 ' x 44') = 20.944 kips
Second Floor: 11 psf (30^{\prime} x 40') = 13.20 kips First floor: $7 \mathrm{psf}\left(30^{\prime} \mathrm{x} 40^{\prime}\right)=8.40$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 10 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=22.40$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ') $2 / 2=0.75$ kips
Cripple walls: $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=1.68 \mathrm{kips}$
24.83 kips

Interior wall: $12 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \times 5+39^{\prime} \times 3\right)=25.152$ kips
Sum W $=20.94+13.2+8.4+24.83+25.15=92.53 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=17.210 \mathrm{kips}$
V to each cripple wall line $=17.210 / 2=\mathbf{8 . 6 0} \mathbf{k i p s}$
Number of sill bolts needed along any wall:
8,605 pounds $/ 820$ pounds/bolt $=\mathbf{1 1} \mathbf{- 1 / 2 "}$ bolts
8,605 pounds / 1170 pounds/bolt $=\mathbf{8}-\mathbf{5} / \mathbf{8}$ " bolts
8,605 pounds / 1340 pounds/UFP10 = 7 UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of panel based on 16 " stud spacing 8,605 pounds / 380 plf = 22'-8"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=8,605$ pounds $/ 22.67$ feet x 4.0 feet $=1,519$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=204.7$
OTM $=1,519$ pounds $\times 2$ foot wall height $=3,037 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 204.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm) $=2,210 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,037-2,210) / 4$ feet $=207$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:

V to 4 foot long panel $=8,605$ pounds $/ 22.67$ feet x 4.0 feet $=1,519$ pounds
w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=387.5 \mathrm{plf}$
OTM $=1,519$ pounds x 2 foot wall height $=3,037 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 387.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=4,185 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,037-4,185) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall:

V to 8 foot long panel $=8,605$ pounds $/ 22.67$ feet $x .0$ feet $=3,037$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=204.7$
$\mathrm{OTM}=3,037$ pounds $\times 2$ foot wall height $=6,074 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 204.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,368 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,074-7,368) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=8,605$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,037$ pounds
$\mathrm{w}^{\text {d }}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
$\mathrm{OTM}=3,037$ pounds $\times 4$ foot wall height $=12,148 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=7,800 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(12,148-7,800) / 8$ feet $=544$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '-0" panel end studs
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=8,605$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,037$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=399.5 \mathrm{plf}$
OTM $=3,037$ pounds $x 4$ foot wall height $=12,148 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 399.5$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=14,382 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,148-14,382) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=8,605$ pounds $/ 22.67$ feet x 12.0 feet $=4,556$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$ OTM $=4,556$ pounds $\times 4$ feet wall height $=18,222 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (14 feet tributary length)(12 feet) $/ 2$ moment arm) $=16,380 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,222-16,380) / 12$ feet $=153$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs

Overturning of $\mathbf{4}$ foot high cripple wall with 16 foot minimum panel length along gable end wall

V to 12 foot long panel $=8,605$ pounds $/ 22.67$ feet $x 16.0$ feet $=6,074$ pounds
${ }^{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
OTM $=6,074$ pounds $\times 4$ feet wall height $=24,296 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (18 feet tributary length)(16 feet) $/ 2$ moment arm) $=28,080 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(24,296-28,080) / 16$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=8,605$ pounds $/ 450$ pounds per connection $=\mathbf{2 0} \mathbf{L 7 0}$ or A35, or
$\mathrm{V}=8,605$ pounds $/ 585$ pounds per connection $=\mathbf{1 5} \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=287$ plf
Longitudinal Wall Line $=40$ feet $=215$ plf

Case 3B Two Story Demand / Capacity for $30 \mathrm{ft} \times 30 \mathrm{ft}(\mathbf{1 , 8 0 0}$ Sq. Ft.)

Dead loads (W) tributary to cripple wall level for 1,800 square feet:
Roof/Ceiling: 14psf ($34{ }^{\prime}$ x 34^{\prime}) $=16.184$ kips
Second Floor: $11 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=9.90$ kips First floor: $7 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=6.30$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 10 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=19.20$ kips
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30\right.$ ' $) 2 / 2=\quad 0.75$ kips
Cripple walls: $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=1.44 \mathrm{kips}$
21.39 kips

Interior wall: $12 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \times 5+29 '\right.$ x 3$)=22.272$ kips
Sum $\mathrm{W}=16.18+9.90+6.30+21.39+22.27=76.05 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=14.145 \mathrm{kips}$
V to each cripple wall line $=14.145 / 2=7.07$ kips
Number of sill bolts needed along any wall:
7,072 pounds / 820 pounds/bolt = $9-\mathbf{1} / \mathbf{2}^{\text {" }}$ bolts
7,072 pounds / 1170 pounds/bolt = $7-\mathbf{5 / 8}$ " bolts
7,072 pounds / 1340 pounds/UFP10 = $\mathbf{6}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing 7,072 pounds / 380 plf = 18’-8"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
V to 4 foot long panel $=7,072$ pounds $/ 18.67$ feet x 4.0 feet $=1,515$ pounds w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=204.7$ $\mathrm{OTM}=1,515$ pounds $\times 2$ foot wall height $=3,031 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 204.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,210 \mathrm{lb}-\mathrm{ft}$

OTM - RTM / panel length = (3,031-2,210) / 4 feet = 205 pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:

V to 4 foot long panel $=7,072$ pounds $/ 18.67$ feet x 4.0 feet $=1,515$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=387.5 \mathrm{plf}$
OTM $=1,515$ pounds $x 2$ foot wall height $=3,031 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 387.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=4,185 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,031-4,185) / 4$ feet $=$ NO uplift
Overturning of 2 foot high cripple wall with 8 foot minimum panel length along gable end wall:
V to 8 foot long panel $=7,072$ pounds $/ 18.67$ feet $x 8.0$ feet $=3,031$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=204.7$
$\mathrm{OTM}=3,031$ pounds x 2 foot wall height $=6,062 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 204.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,368 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(6,062-7,368) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with 8 foot minimum panel length along gable end wall
V to 8 foot long panel $=7,072$ pounds $/ 18.67$ feet $x 8.0$ feet $=3,031$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
$\mathrm{OTM}=3,031$ pounds x 4 foot wall height $=12,123 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=7,800 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,123-7,800) / 8$ feet $=540$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8 '-0" panel end studs
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=7,072$ pounds $/ 18.67$ feet $x 8.0$ feet $=3,031$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=399.5 \mathrm{plf}$
$\mathrm{OTM}=3,031$ pounds x 4 foot wall height $=12,123 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 399.5$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=14,382 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,123-14,382) / 8$ feet $=$ No uplift
Overturning of 4 foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=7,072$ pounds $/ 18.67$ feet $x 12.0$ feet $=4,546$ pounds ${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
$\mathrm{OTM}=4,546$ pounds $\times 4$ feet wall height $=18,185 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (14 feet tributary length $)(12$ feet $) / 2$ moment arm $)=16,380 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(18,185-16,380) / 12$ feet $=150$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $12^{\prime}-0$ " braced panel end studs

Overturning of 4 foot high cripple wall with 16 foot minimum panel length along gable end wall

V to 12 foot long panel $=7,072$ pounds $/ 18.67$ feet $x 16.0$ feet $=6,062$ pounds
${ }^{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
OTM $=6,062$ pounds $x 4$ feet wall height $=24,247 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (18 feet tributary length $)(16$ feet) $/ 2$ moment arm $)=28,080 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(24,247-28,080) / 16$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=7,072$ pounds / 450 pounds per connection = $\mathbf{1 6} \mathbf{L 7 0}$ or $\mathbf{A 3 5}$, or
$\mathrm{V}=7,072$ pounds / 585 pounds per connection = $\mathbf{1 2} \mathbf{L 9 0}$ or $\mathbf{1 3} \mathbf{H 1 0 R}$
Transverse Wall Line $=30$ feet $=236$ plf
Longitudinal Wall Line = $\mathbf{3 0}$ feet $=\mathbf{2 3 6}$ plf

Case 3B Two Story Demand / Capacity for 30' x 50' = 3,000 square feet
Dead loads (W) tributary to cripple wall level for 3,000 square feet:
Roof/Ceiling: 14 psf (34 ' x 54 ') $=25.704$ kips
Second Floor: $11 \mathrm{psf}(30 ' \times 50$ ' $)=16.50$ kips First floor: $7 \mathrm{psf}(30 ' \times 50 ')=10.50$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $10 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+50^{\prime} \times 2\right)=25.60 \mathrm{kips}$
Gable end walls: $\quad 5 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 0.75$ kips
Cripple walls: $\quad 6 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+50^{\prime} \times 2\right)=\frac{1.92 \mathrm{kips}}{28.27 \mathrm{kips}}$
Interior wall: $12 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \times 5+49^{\prime} \mathrm{x} 3\right)=28.032 \mathrm{kips}$
Sum $\mathrm{W}=25.70+16.50+10.50+28.27+28.03=109.01 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=20.275 \mathrm{kips}$
V to each cripple wall line $=20.275 / 2=\mathbf{1 0 . 1 4} \mathbf{~ k i p s}$
Number of sill bolts needed along any wall:
10,138 pounds / 820 pounds/bolt = $\mathbf{1 3 - 1 / 2 "}$ bolts
10,138 pounds / 1170 pounds/bolt $=\mathbf{9}-\mathbf{5 / 8}$ " bolts
10,138 pounds $/ 1340$ pounds/UFP10 $=\mathbf{8}$ UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:

V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing 10,138 pounds / $380 \mathrm{plf}=\mathbf{2 6}$ '-8" or for $\mathbf{1 0 d}$ @ $\mathbf{4 "} \mathbf{1 0 , 1 3 8}$ pounds / 460 plf = 22’-8"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall: Using 10d @ 4" edge nailing
V to 4 foot long panel $=10,138$ pounds $/ 22.67$ feet $x 4.0$ feet $=1,789$ pounds w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=204.7$
$\mathrm{OTM}=1,789$ pounds $\times 2$ foot wall height $=3,578 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 204.7$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=2,210 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,578-2,210) / 4$ feet $=342$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 4'-0" braced panel end studs

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=10,138$ pounds $/ 22.67$ feet x 4.0 feet $=1,789$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=387.5 \mathrm{plf}$ OTM $=1,789$ pounds $x 2$ foot wall height $=3,578 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 387.5$ plf (6 foot tributary length)(4 foot $/ 2$ moment arm) $=4,185 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,578-4,185) / 4$ feet $=$ NO uplift

Overturning of 2 foot high cripple wall with 8 foot minimum panel length along gable end wall:
V to 8 foot long panel $=10,138$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,578$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(2^{\prime}\right)=204.7$
OTM $=3,578$ pounds $x 2$ foot wall height $=7,156 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 204.7$ plf (10 foot tributary length $)(8$ foot $/ 2$ moment arm $)=7,368 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(7,156-7,368) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=10,138$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,578$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
$\mathrm{OTM}=3,578$ pounds x 4 foot wall height $=14,312 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=7,800 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(14,312-7,800) / 8$ feet $=\mathbf{8 1 4}$ pounds uplift
Locate two new sill bolts with plate washer within 6 inches of each 8'-0" panel end studs (one each side)
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=10,138$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,578$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=399.5 \mathrm{plf}$
$\mathrm{OTM}=3,578$ pounds x 4 foot wall height $=14,312 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 399.5$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=14,382 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(14,312-14,382) / 8$ feet $=$ No uplift
Overturning of 4 foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=10,138$ pounds $/ 22.67$ feet $x 12.0$ feet $=5,367$ pounds ${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$
$\mathrm{OTM}=5,367$ pounds $\times 4$ feet wall height $=21,469 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (14 feet tributary length $)(12$ feet) $/ 2$ moment arm $)=16,380 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(21,469-16,380) / 12$ feet $=424$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each braced panel end studs

Overturning of $\mathbf{4}$ foot high cripple wall with 16 foot minimum panel length along gable end wall

V to 12 foot long panel $=10,138$ pounds $/ 22.67$ feet $x 12.0$ feet $=7,156$ pounds w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+5 \mathrm{psf}\left(2.67^{\prime} / 2\right)+10 \mathrm{psf}\left(16^{\prime}\right)+6 \mathrm{psf}\left(4^{\prime}\right)=216.7$ OTM $=7,156$ pounds $x 4$ feet wall height $=28,625 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 216.7$ plf (18 feet tributary length)(16 feet) $/ 2$ moment arm) $=28,080 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(28,625-28,080) / 16$ feet $=34$ pounds uplift (Neglect)

Shear Transfer Along Each Wall Line

$\mathrm{V}=10,138$ pounds $/ 450$ pounds per connection $=23 \mathrm{~L} 70$ or A35, or $\mathrm{V}=10,138$ pounds $/ 585$ pounds per connection $=17 \mathbf{L 9 0}$ or $18 \mathrm{H10R}$

Transverse Wall Line $=30$ feet $=338$ plf Longitudinal Wall Line = 50 feet $=203$ plf

Case 3C Two Story Demand / Capacity for $30 \mathrm{ft} \mathbf{x} 40 \mathrm{ft}$ (2,400 Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: 1 / 1.4 Seismic V $=0.186 \mathrm{~W}$

Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 14 psf (34 ' x 44 ') $=20.944$ kips
Second Floor: 11 psf $\left(30^{\prime} \times 40^{\prime}\right)=13.20$ kips First floor: 7 psf (30 x 40 ') $=8.40$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $17 \mathrm{psf}\left(16^{\prime}\right)\left(30 '\right.$ x $\left.2+40^{\prime} \times 2\right)=38.08$ kips
Deduct for windows: $\quad-7$ psf (240 sq. ft.) $=\quad<-1.68>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 1.80$ kips
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+40^{\prime} \times 2\right)=\frac{3.78 \mathrm{kips}}{41.98 \mathrm{kips}}$
Interior wall: $12 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \mathrm{x} 5+39^{\prime} \mathrm{x} 3\right)=25.152$ kips
Sum $\mathrm{W}=20.94+13.2+8.4+41.98+25.15=109.68$ kips
Total $V=(0.186) \mathrm{W}=20.40$ kips
V to each cripple wall line $=20.40 / 2=\mathbf{1 0 . 2 0}$ kips
Number of sill bolts needed along any wall:
10,200 pounds / 820 pounds/bolt = $\mathbf{1 3 - 1 / 2 "}$ bolts
10,200 pounds / 1170 pounds/bolt = $9-\mathbf{5 / 8}$ " bolts
10,200 pounds / 1340 pounds/UFP10 = $\mathbf{8}$ UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of panel based on 16 " stud spacing 10,200 pounds / 380 plf = 28’-0" or for 10d @ 4" $10,200 / 460=22^{\prime}-\mathbf{8 "}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall: Using 10d @ 4" edge nailing
V to 4 foot long panel $=10,200$ pounds $/ 22.67$ feet x 4.0 feet $=1,800$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=341$
OTM $=1,800$ pounds $\times 2$ foot wall height $=3,600 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 341$ plf (6 foot tributary length) (4 foot $/ 2$ moment arm) $=3,683 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,600-3,683) / 4$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=10,200$ pounds $/ 22.67$ feet $x 4.0$ feet $=1,800$ pounds
w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=514.5$ plf OTM $=1,800$ pounds x 2 foot wall height $=3,600 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 514.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=5,557 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,600-5,557) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=10,200$ pounds $/ 22.67$ feet $x 8.0$ feet $=3,600$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368$
$\mathrm{OTM}=3,600$ pounds $\times 4$ foot wall height $=14,400 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 368$ plf (10 foot tributary length) $(8$ foot) $/ 2$ moment arm $)=13,248 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(14,400-13,248) / 8$ feet $=\mathbf{1 4 4}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each $8^{\prime}-0$ " panel end studs
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=10,200$ pounds $/ 22.67$ feet x 8.0 feet $=3,600$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=541.5 \mathrm{plf}$
OTM $=3,600$ pounds $\times 4$ foot wall height $=14,400 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 541.5$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=19,494 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(14,400-19,494) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{1 2}$ foot minimum panel length along gable end wall
V to 12 foot long panel $=10,200$ pounds $/ 22.67$ feet x 12.0 feet $=5,400$ pounds w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368$ OTM $=5,400$ pounds $\times 4$ feet wall height $=21,600 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 368 \mathrm{plf}(14$ feet tributary length $)(12$ feet) $/ 2$ moment arm $)=27,821 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(21,600-27,821) / 12$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$V=10,200$ pounds / 450 pounds per connection = 23 L70 or A35, or
$V=10,200$ pounds $/ 450$ pounds per connection $=17 \mathbf{L 9 0}$ or $\mathbf{1 8} \mathbf{H 1 0 R}$
Transverse Wall Line $=30$ feet $=340$ plf
Longitudinal Wall Line $=\mathbf{4 0}$ feet $=\mathbf{2 5 5}$ plf

Case 3C Two Story Demand / Capacity for $30 \mathrm{ft} \times 30 \mathrm{ft}(1,800 \mathrm{Sq}$. Ft.)

Dead loads (W) tributary to cripple wall level for 1,800 square feet:
Roof/Ceiling: 14psf (34' x 34') = 16.184 kips
Second Floor: $11 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=9.90$ kips First floor: $7 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=6.30$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 17 \mathrm{psf}\left(1^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=32.64$ kips
Deduct for windows-7 psf (200 sq. ft.) $=\quad<-1.40>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=1.80$ kips
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \mathrm{x} 2+30 ' \mathrm{x} 2\right)=\frac{3.24 \mathrm{kips}}{36.28 \mathrm{kips}}$
Interior wall: 12 psf (8') (29' x $5+29$ x 3) = 22.272 kips
Sum $\mathrm{W}=16.18+9.90+6.30+36.28+22.27=90.94 \mathrm{kips}$
Total $\mathrm{V}=(0.186) \mathrm{W}=16.914 \mathrm{kips}$
V to each cripple wall line $=16.914 / 2=8.46$ kips
Number of sill bolts needed along any wall:
8,457 pounds $/ 820$ pounds/bolt $=\mathbf{1 1} \mathbf{- 1 / 2 "}$ bolts
8,457 pounds $/ 1170$ pounds/bolt $=\mathbf{8} \mathbf{- 5 / 8}$ " bolts
8,457 pounds / 1340 pounds/UFP10 = 7 UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing 8,457 pounds / 380 plf = 22' $\mathbf{- 8 \prime \prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

V to 4 foot long panel $=8,457$ pounds $/ 22.67$ feet x 4.0 feet $=1,492$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=341$
$\mathrm{OTM}=1,492$ pounds $\times 2$ foot wall height $=2,985 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 341$ plf (6 foot tributary length) (4 foot $/ 2$ moment arm) $=3,683 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(2,985-3,683) / 4$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=8,457$ pounds $/ 22.67$ feet x 4.0 feet $=1,492$ pounds w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=514.5 \mathrm{plf}$ $\mathrm{OTM}=1,492$ pounds $\times 2$ foot wall height $=2,985 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 514.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=5,557 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(2,985-5,557) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=8,457$ pounds $/ 22.67$ feet $x 8.0$ feet $=2,985$ pounds
w dead load to panel = $14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368$ $\mathrm{OTM}=2,985$ pounds x 4 foot wall height $=11,939 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 368$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=13,248 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,939-13,248) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=8,457$ pounds $/ 22.67$ feet $x .0$ feet $=2,985$ pounds
${ }_{\mathrm{w}}$ dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=541.5 \mathrm{plf}$ $\mathrm{OTM}=2,985$ pounds $\times 4$ foot wall height $=11,939 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 541.5$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=19,494 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(11,939-19,494) / 8$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=8,457$ pounds $/ 450$ pounds per connection $=\mathbf{1 9} \mathbf{L 7 0}$ or A35, or
$\mathrm{V}=8,457$ pounds $/ 585$ pounds per connection $=\mathbf{1 5} \mathbf{L 9 0}$ or H10R
Transverse Wall Line $=30$ feet $=282$ plf Longitudinal Wall Line = 30 feet $=282$ plf

Case 3C Two Story Demand / Capacity for 30' x 50' = 3,000 square feet
Dead loads (W) tributary to cripple wall level for 3,000 square feet:
Roof/Ceiling: 14 psf (34' x 54') $=25.704$ kips
Second Floor: 11 psf ($30^{\prime} \times 50$ ' $)=16.50$ kips First floor: 7 psf $\left(30^{\prime} \times 50\right.$ ' $)=10.50$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $17 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+50^{\prime} \times 2\right)=43.52 \mathrm{kips}$
Deduct for Windows: -7 psf (300 sq. ft. $)=\quad<-2.10>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 1.80 \mathrm{kips}$
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+50 '\right.$ x 2$)=\frac{4.32 \mathrm{kips}}{47.54 \mathrm{kips}}$
Interior wall: $12 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \times 5+49^{\prime} \times 3\right)=28.032 \mathrm{kips}$
Sum $\mathrm{W}=25.70+16.50+10.50+47.54+28.03=128.28 \mathrm{kips}$
Total V = (0.186) W = 23.86 kips
V to each cripple wall line $=23.86 / 2=11.93 \mathbf{k i p s}$
Number of sill bolts needed along any wall:
11,930 pounds / 820 pounds/bolt = $\mathbf{1 5 - 1 / 2 "}$ bolts
11,930 pounds / 1170 pounds/bolt = $\mathbf{1 1}-\mathbf{5 / 8}$ " bolts
11,930 pounds / 1340 pounds/UFP10 = 9 UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing

Overturning of 2 foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall: Using 10d @ 4" edge nailing

```
V to 4 foot long panel = 11,930 pounds / 26.67 feet x 4.0 feet = 1,790 pounds
w dead load to panel = 14 psf (1') + (11 psf +7 psf)(1.33`/2) +12 psf (2.67`/2)+17 psf (16`)+ 13.5 psf (2')= 341
OTM = 1,790 pounds x 2 foot wall height = 3,579 lb-ft
RTM = 0.9 x 341 plf (6 foot tributary length )(4 foot /2 moment arm) = 3,683 lb-ft
OTM - RTM / panel length = (3,579 - 3,683) / 4 feet = NO uplift
```

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=11,930$ pounds $/ 26.67$ feet $x 4.0$ feet $=1,790$ pounds w dead load to panel = $14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=514.5 \mathrm{plf}$ OTM $=1,790$ pounds x 2 foot wall height $=3,579 \mathrm{lb}-\mathrm{ft}$ RTM $=0.9 \times 514.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=5,557 \mathrm{lb}-\mathrm{ft}$ OTM - RTM $/$ panel length $=(3,579-5,557) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall

V to 8 foot long panel $=11,930$ pounds $/ 26.67$ feet $x 8.0$ feet $=3,579$ pounds
w dead load to panel = 14 psf ($\left.1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368$
$\mathrm{OTM}=3,579$ pounds x 4 foot wall height $=14,316 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 368$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=13,248 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(14,316-13,248) / 8$ feet $=\mathbf{1 3 4}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8'-0" panel end studs
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=11,930$ pounds $/ 26.67$ feet $x 8.0$ feet $=3,579$ pounds
w dead load to panel $=14 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=541.5 \mathrm{plf}$
$\mathrm{OTM}=3,579$ pounds x 4 foot wall height $=14,316 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 541.5$ plf (10 foot tributary length $)(8$ foot) $/ 2$ moment arm $)=19,494 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(14,316-19,494) / 8$ feet $=$ NO uplift

Overturning of 4 foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=11,930$ pounds $/ 26.67$ feet $x 12.0$ feet $=5,369$ pounds
w dead load to panel $=14 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=368$ $\mathrm{OTM}=5,369$ pounds x 4 feet wall height $=21,474 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 368$ plf (14 feet tributary length $)(12$ feet) $/ 2$ moment arm $)=27,821 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(21,474-27,821) / 12$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=11,390$ pounds $/ 450$ pounds per connection $=27 \mathbf{L 7 0}$ or A35; or
$\mathrm{V}=11,390$ pounds $/ 585$ pounds per connection = $19 \mathrm{L90}$, or 20 H10R
Transverse Wall Line $=30$ feet $=398$ plf
Longitudinal Wall Line $=50$ feet $=\mathbf{2 3 9}$ plf

Case 3D Two Story Demand / Capacity for $30 \mathrm{ft} \mathbf{x} 40 \mathrm{ft}(\mathbf{2 , 4 0 0}$ Sq. Ft.)

Assume SD soil with $\mathrm{Ca}=0.44 ; \mathrm{Na}=1.3 ; \mathrm{I}=1.00$; and $\mathrm{R}=5.5$; Conversion to ASD force level: 1 / 1.4 Seismic V $=0.186 \mathrm{~W}$

Dead loads (W) tributary to cripple wall level for 30×40 two story $=2,400$ square feet:
Roof/Ceiling: 20 psf ($34{ }^{\prime}$ x 44') $=29.92$ kips
Second Floor: 11 psf $\left(30^{\prime} \times 40^{\prime}\right)=13.20$ kips First floor: $7 \mathrm{psf}\left(30^{\prime} \times 40^{\prime}\right)=8.40$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 17 \mathrm{psf}\left(16^{\prime}\right)\left(30 '\right.$ x $\left.2+40^{\prime} \times 2\right)=38.08$ kips
Deduct for windows: $\quad-7 \mathrm{psf}(240 \mathrm{sq} . \mathrm{ft}$.) $=\quad<-1.68>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 1.80 \mathrm{kips}$
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)(30 '$ x $2+40 '$ x 2$)=\frac{3.78 \mathrm{kips}}{41.98 \mathrm{kips}}$
Interior wall: 12 psf (8') (29' x $5+39$ x 3$)=25.152$ kips
Sum $\mathrm{W}=29.92+13.2+8.4+41.98+25.15=118.65 \mathrm{kips}$
Total V = (0.186) W = 22.07 kips
V to each cripple wall line = $22.07 / 2=11.035$ kips
Number of sill bolts needed along any wall:

11,035 pounds $/ 820$ pounds/bolt $=14 \mathbf{- 1 / 2 "}$ bolts
11,035 pounds $/ 1170$ pounds/bolt $=10-5 / \mathbf{8}$ " bolts
11,035 pounds / 1340 pounds/UFP10 = 9 UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 " stud spacing 11,035 pounds / 380 plf = 29’-4" or for 10d @ $\mathbf{4 \prime \prime} 11,035 / 460=\mathbf{2 4} \mathbf{\prime}-\mathbf{0}^{\prime \prime}$

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:
Using 10d @ 4" edge nailing
V to 4 foot long panel $=11,035$ pounds $/ 24$ feet x 4.0 feet $=1,839$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=347$
OTM $=1,839$ pounds $\times 2$ foot wall height $=3,678 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 347$ plf (6 foot tributary length)(4 foot $/ 2$ moment arm) $=3,748 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,678-3,748) / 4$ feet $=$ NO uplift
Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:

V to 4 foot long panel $=11,035$ pounds $/ 24$ feet x 4.0 feet $=1,839$ pounds
w dead load to panel = $20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=559.5 \mathrm{plf}$
OTM $=1,839$ pounds $\times 2$ foot wall height $=3,678 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 559.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=6,043 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,678-6,043) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=11,035$ pounds $/ 24$ feet $x 8.0$ feet $=3,678$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=374$ $\mathrm{OTM}=3,678$ pounds x 4 foot wall height $=14,713 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 374$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=13,464 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(14,713-13,464) / 8$ feet $=\mathbf{1 5 6}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8'-0" panel end studs
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=11,035$ pounds $/ 24$ feet $x 8.0$ feet $=3,678$ pounds
w dead load to panel $=20 \operatorname{psf}\left(7.5^{\prime}\right)+7 \operatorname{psf}\left(4^{\prime}\right)+11 \operatorname{psf}\left(7.5^{\prime}\right)+17 \operatorname{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=586.5 \mathrm{plf}$
$\mathrm{OTM}=3,678$ pounds x 4 foot wall height $=14,713 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 586.5$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=21,114 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(14,713-21,114) / 8$ feet $=$ NO uplift

Overturning of 4 foot high cripple wall with 12 foot minimum panel length along gable end wall
V to 12 foot long panel $=11,035$ pounds $/ 24$ feet $x 12.0$ feet $=5,518$ pounds w^{2} dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=374$ $\mathrm{OTM}=5,418$ pounds $\times 4$ feet wall height $=22,070 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 374$ plf (14 feet tributary length $)(12$ feet) $/ 2$ moment arm $)=28,274 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(22,070-28,274) / 12$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$V=11,035$ pounds / 450 pounds per connection = 25 L70 or A35, or $\mathrm{V}=11,035$ pounds $/ 450$ pounds per connection = $\mathbf{1 9} \mathbf{L 9 0}$ or H10R

Transverse Wall Line $=30$ feet $=368$ plf Longitudinal Wall Line = 40 feet $=\mathbf{2 7 6}$ plf

Case 3D Two Story Demand / Capacity for $30 \mathrm{ft} \times 30 \mathrm{ft}(\mathbf{1 , 8 0 0} \mathbf{~ S q . ~ F t .) ~}$

Dead loads (W) tributary to cripple wall level for 1,800 square feet:
Roof/Ceiling: 20 psf (34' x 34^{\prime}) = 23.12 kips
Second Floor: $11 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=9.90$ kips First floor: $7 \mathrm{psf}\left(30^{\prime} \times 30^{\prime}\right)=6.30$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $\quad 17 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=32.64$ kips
Deduct for windows-7 psf (200 sq. ft.) $=\quad<-1.40>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=1.80$ kips
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+30^{\prime} \times 2\right)=\frac{3.24 \mathrm{kips}}{36.28 \mathrm{kips}}$
Interior wall: 12 psf (8') (29' x $5+29$ x 3) $=22.272$ kips
Sum W $=23.12+9.90+6.30+36.28+22.27=97.87$ kips
Total $V=(0.186) \mathrm{W}=18.204 \mathrm{kips}$
V to each cripple wall line $=18.204 / 2=9.10$ kips
Number of sill bolts needed along any wall:

9,102 pounds / 820 pounds/bolt = $12 \mathbf{- 1} / \mathbf{2}^{\prime \prime}$ bolts
9,102 pounds / 1170 pounds/bolt $=8-5 / 8$ " bolts 9,102 pounds / 1340 pounds/UFP10 = 7 UFP10

Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing:
V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing 9,102 pounds / 380 plf = 24'-0"

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along gable end wall:

```
V to 4 foot long panel \(=9,102\) pounds \(/ 24\) feet 4.0 feet \(=1,517\) pounds
w dead load to panel \(=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=347\)
OTM \(=1,517\) pounds \(\times 2\) foot wall height \(=3,034 \mathrm{lb}-\mathrm{ft}\)
RTM \(=0.9 \times 347\) plf ( 6 foot tributary length)( 4 foot \(/ 2\) moment arm) \(=3,748 \mathrm{lb}-\mathrm{ft}\)
OTM - RTM / panel length \(=(3,034-3,748) / 4\) feet \(=\) NO uplift
```

Overturning of $\mathbf{2}$ foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=9,102$ pounds $/ 24$ feet 4.0 feet $=1,517$ pounds
w dead load to panel = $20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=559.5 \mathrm{plf}$ OTM $=1,517$ pounds $\times 2$ foot wall height $=3,034 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 559.5$ plf (6 foot tributary length)(4 foot $/ 2$ moment arm) $=6,043 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,034-6,043) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=9,102$ pounds $/ 24$ feet $x 8.0$ feet $=3,034$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=374$
$\mathrm{OTM}=3,034$ pounds x 4 foot wall height $=12,136 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 374$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=13,464 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,136-13,464) / 8$ feet $=$ NO uplift
Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along longitudinal wall
V to 8 foot long panel $=9,102$ pounds $/ 24$ feet $x 8.0$ feet $=3,034$ pounds
w dead load to panel $=20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=586.5 \mathrm{plf}$
$\mathrm{OTM}=3,034$ pounds x 4 foot wall height $=12,136 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 586.5$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=21,114 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(12,136-19,494) / 8$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=9,102$ pounds / 450 pounds per connection $=21 \mathbf{L 7 0}$ or A35, or
$\mathrm{V}=9,102$ pounds $/ 585$ pounds per connection $=\mathbf{1 6} \mathbf{L 9 0}$ or H10R

Transverse Wall Line = 30 feet $=303$ plf

Longitudinal Wall Line = $\mathbf{3 0}$ feet $=\mathbf{3 0 3}$ plf

Case 3D Two Story Demand / Capacity for 30' x 50' = 3,000 square feet
Dead loads (W) tributary to cripple wall level for 3,000 square feet:
Roof/Ceiling: 20 psf (34 ' x 54') $=36.72$ kips
Second Floor: 11 psf ($30^{\prime} \times 50$ ' $)=16.50$ kips First floor: 7 psf $\left(30^{\prime} \times 50\right.$ ' $)=10.50$ kips
Exterior Walls:
$1^{\text {st }} \& 2^{\text {nd }}$ Story walls: $17 \mathrm{psf}\left(16^{\prime}\right)\left(30^{\prime}\right.$ x $2+50^{\prime}$ x 2$)=43.52$ kips
Deduct for Windows: -7 psf (300 sq. ft. $)=\quad<-2.10>$ kips
Gable end walls: $\quad 12 \mathrm{psf}\left(5^{\prime} \times 30^{\prime}\right) 2 / 2=\quad 1.80$ kips
Cripple walls: $\quad 13.5 \mathrm{psf}\left(2^{\prime}\right)\left(30^{\prime} \times 2+50 '\right.$ x 2$)=\frac{4.32 \mathrm{kips}}{47.54 \mathrm{kips}}$
Interior wall: $\quad 12 \mathrm{psf}\left(8^{\prime}\right)\left(29^{\prime} \mathrm{x} 5+49^{\prime} \mathrm{x} 3\right)=28.032$ kips

Sum $\mathrm{W}=36.72+16.50+10.50+47.54+28.03=139.29$ kips
Total $\mathrm{V}=(0.186) \mathrm{W}=25.91$ kips
V to each cripple wall line $=25.91 / 2=12.95$ kips
Number of sill bolts needed along any wall:
12,954 pounds / 820 pounds/bolt = $16 \mathbf{- 1 / 2 "}$ bolts
12,954 pounds / 1170 pounds/bolt $=12-\mathbf{5 / 8}$ " bolts
12,954 pounds / 1340 pounds/UFP10 = 10 UFP10
Length of cripple wall braced with 15/32" rated plywood sheathing w/ 8d @ 4" edge nailing: V to each wall line / unit capacity = lineal feet of panel based on 16 inch stud spacing 12,954 pounds $/ 380$ plf = 34’-0" NG!! Must use 10d @ 4" 12,954 pounds / 460 plf = 28’-8"

Overturning of 2 foot high cripple wall with 4 foot minimum panel length along gable end wall: Using 10d @ 4" edge nailing
V to 4 foot long panel $=12,954$ pounds $/ 28.67$ feet x 4.0 feet $=1,808$ pounds
w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=347$
OTM $=1,808$ pounds $x 2$ foot wall height $=3,615 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 347$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=3,748 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(3,615-3,748) / 4$ feet $=$ NO uplift
Overturning of 2 foot high cripple wall with $\mathbf{4}$ foot minimum panel length along longitudinal wall:
V to 4 foot long panel $=12,954$ pounds $/ 28.67$ feet $x 4.0$ feet $=1,808$ pounds
w dead load to panel $=20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(2^{\prime}\right)=559.5 \mathrm{plf}$ OTM $=1,808$ pounds $\times 2$ foot wall height $=3,615 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 559.5$ plf (6 foot tributary length $)(4$ foot $/ 2$ moment arm $)=6,043 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(3,615-6,043) / 4$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with $\mathbf{8}$ foot minimum panel length along gable end wall
V to 8 foot long panel $=12,954$ pounds $/ 28.67$ feet $x 8.0$ feet $=3,615$ pounds w dead load to panel $=20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=374$ $\mathrm{OTM}=3,615$ pounds x 4 foot wall height $=14,460 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 374$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=13,464 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(14,460-13,464) / 8$ feet $=\mathbf{1 2 5}$ pounds uplift
Locate one new sill bolt with plate washer within 6 inches of each 8'-0" panel end studs
Overturning of 4 foot high cripple wall with 8 foot minimum panel length along longitudinal wall
V to 8 foot long panel $=12,954$ pounds $/ 28.67$ feet $\times 8.0$ feet $=3,615$ pounds w dead load to panel $=20 \mathrm{psf}\left(7.5^{\prime}\right)+7 \mathrm{psf}\left(4^{\prime}\right)+11 \mathrm{psf}\left(7.5^{\prime}\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=586.5 \mathrm{plf}$ $\mathrm{OTM}=3,615$ pounds x 4 foot wall height $=14,460 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 586.5$ plf (10 foot tributary length $)(8$ foot $) / 2$ moment arm $)=21,114 \mathrm{lb}-\mathrm{ft}$
OTM - RTM $/$ panel length $=(14,460-19,494) / 8$ feet $=$ NO uplift

Overturning of $\mathbf{4}$ foot high cripple wall with 12 foot minimum panel length along gable end wall

V to 12 foot long panel $=12,954$ pounds $/ 28.67$ feet x 12.0 feet $=5,423$ pounds
w dead load to panel = $20 \mathrm{psf}\left(1^{\prime}\right)+(11 \mathrm{psf}+7 \mathrm{psf})\left(1.33^{\prime} / 2\right)+12 \mathrm{psf}\left(2.67^{\prime} / 2\right)+17 \mathrm{psf}\left(16^{\prime}\right)+13.5 \mathrm{psf}\left(4^{\prime}\right)=374$
OTM $=5,423$ pounds $x 4$ feet wall height $=21,690 \mathrm{lb}-\mathrm{ft}$
RTM $=0.9 \times 374$ plf (14 feet tributary length)(12 feet) $/ 2$ moment arm) $=28,274 \mathrm{lb}-\mathrm{ft}$
OTM - RTM / panel length $=(21,690-28,274) / 12$ feet $=$ NO uplift

Shear Transfer Along Each Wall Line

$\mathrm{V}=12,954$ pounds / 450 pounds per connection = 29 L70 or A35; or
$\mathrm{V}=12,954$ pounds $/ 585$ pounds per connection $=22 \mathrm{L90}$, or $\mathbf{2 3} \mathbf{H 1 0 R}$
Transverse Wall Line $=\mathbf{3 0}$ feet $=\mathbf{4 3 2}$ plf
Longitudinal Wall Line $=50$ feet $=\mathbf{2 5 9}$ plf

Shear Transfer to Cripple Walls of Two-Story Buildings

Shear transfer capacity from the first floor into the cripple wall top plate from existing blocking or rim joist (along longitudinal wall lines), or end joist (along transverse wall lines) are determined below.

Along longitudinal walls, floor joists are assumed to be perpendicular and spaced at 16 inches o.c. If existing connections using 8 d common toenails at 8 inches on center (two per joist space) exist between the rim joist or blocking, and the cripple wall top plate or foundation sill plate, that connection capacity would equal: Per 16 inch joist space: 2 nails x $5 / 6$ (for toenails) x 76 pounds (8 d common nails) x $1.33=168$ pounds

168 pounds x 12 / 16 feet = 126 plf capacity
This capacity does not count the two toenails normally connecting each joist to the cripple wall top plate. If only one of these toenails per joist are accounted for, the capacity along the longitudinal wall would equal: Per 16 inch joist space x 1 nail x 76 pounds/nail x $5 / 6 \times 1.33=84$ pounds x $12 / 16=63$ plf
$126+63$ pounds $=189$ plf >185 plf maximum demand at Case 3 A. All other cases exceed 189 plf.
Because toe nails can be difficult to observe and can be ineffective if the wood framing has split at the nails, existing nailing described above may be either absent or ineffective. Also, the current code prohibits the use of toe nails for shear transfer greater than 150 plf. Therefore, because this load path is essential, the shear transfer demand should be accommodated by adding sheet metal angles.

Along transverse walls, if existing 8 d toe nailing at $\mathbf{6}$ inches $\mathbf{o . c}$. is assumed it provides only $\mathbf{1 6 8} \mathbf{p l f}$. The demand along the transverse walls exceeds this amount in all two-story Cases and sizes of buildings. Therefore, adding sheet metal angles definitely is necessary along transverse walls.

With respect to the ability of existing floor sheathing nailing to transfer shear into the top of the blocking or rim joist member the following analysis is provided:

Along the transverse walls where joists are assumed to be parallel to the wall, the ends of the floor sheathing boards should be nailed to that joist. Assuming 1x 6 straight sheathing with 2-8d nails each board, these wall lines should have 4 nails per foot assuming 6 inch wide boards. The capacity provided is 90 pounds per nail x 4 nails x $1.33=478$ plf capacity. This ignores any contribution of sill plate nailing into the end joist. Therefore when straight sheathing is installed no supplemental connection between the upper edge of the end joist and the floor sheathing should be necessary for the maximum 432 plf transverse direction demand of Case 3D ($\mathbf{3 0 0 0} \mathbf{~ s q . ~ f t .) . ~ I f ~ t h e ~ f l o o r ~ s h e a t h i n g ~ i s ~ p l y w o o d ~ a ~ l o w e r ~ c a p a c i t y ~ s h o u l d ~ b e ~ a s s u m e d . ~ T h e ~ t y p i c a l ~ p l y w o o d ~}$ edge nailing is $8 \mathrm{~d} @ 6$ "o.c. which gives 76 pounds x 2 nails/ft. x $1.33=202$ plf. Adding in the 16 d sill plate nailing assumed at 16 " o.c. through the sheathing to the end joist would add 141 pounds $\times(0.77 \mathrm{Cd}) \times 1.33$ $(12 / 16)=109$ plf for a total of 311 plf . This is sufficient for all configurations except for Case 3B ($3000 \mathrm{sq.ft}$.), Case 3C (2400 and 3000 sq . ft.) and Case 3D (2400 sq . ft. and 3000 sq . ft.). The overstress for Case 3B is 9%, for Case 3C 9% and 28%, and for Case 3D, 18% and 39% respectively. Therefore in two-story buildings with plywood sheathed first floors, a supplemental connection along the transverse walls may be prudent.

The longitudinal direction demand is a maximum of 303 plf for Case 3D (1800 sq . ft.). In this case 8 d nails from the sheathing into the rim member should occur at 16 inches on center. This corresponds to each sheathing board being nailed to each rim member at the same spacing as the perpendicular joists. In addition, the first story wall sill plate should be nailed into the rim member with 20d (or perhaps larger nails) at 32 inches on center (one every other stud bay). The combined capacity for both types of nails is: 90 pounds $\times 1.33 \times(12 / 16)+170$ pounds \times $(0.76 \mathrm{Cd}) \times 1.33(12 / 32)=154$ plf. This capacity is less than the demand in all cases and sizes of buildings. Therefore a supplemental connection between the rim member and the floor sheathing, or between the joists and the top plate or foundation sill plate is definitely necessary along longitudinal walls.

Conclusions about shear transfer from floor to cripple wall in Two-Story Buildings:

1) Along Transverse Walls, where joists are parallel, no supplemental connection between the floor sheathing and the top edge of the end joist should be necessary in a two-story condition having a wood board straight sheathed flooring.
2) Along Transverse Walls, a supplemental connection should be provided when plywood floor sheathing is used.
3) Along Longitudinal Walls where joists are perpendicular, a supplemental connection is necessary at the top edge of the blocking or rim joist, or between the joist and the top plate or foundation sill plate for two-story buildings.
4) In all Cases and building sizes sheet metal angles should be provided between the bottom edge of joists or blocking and the top plate of the cripple wall or foundation sill plate,

Cripple Wall Top Plate used as a Collector in Two-Story Buildings

Where an existing cripple wall uses a single top plate, or has a double top plate constructed without a standard lap splice as required by the code (e.g., 4 foot lap with $8-16 \mathrm{~d}$ nails) these conditions may create a weak link in a top plate being used as a collector between widely spaced retrofit braced wall segments. The collector force along the longitudinal walls (where joists are assumed perpendicular) varies from 103 plf to 188 plf . For the Case 3A of the 3,000 sq. ft. building with a 56 foot long wall where a total of 21-4" feet of bracing is provided, if this bracing is located in two sections only at each end of the wall, the collector length will be one half of the distance between the two braced segments. For this case, the maximum force demand along this collector occurs where it connects to the braced sections of the cripple wall, and is determined below:
(56 feet -21.33 feet) $/ 2 \times 160$ plf $=2,773$ pounds
The actual connection force will be proportionally less by 160 pounds per foot, where the butt joint occurs further away from the end of the braced panel and closer to the mid length of the wall. If braced panels are distributed along the length of the wall, rather than concentrated at the ends only, the splice connection force is also reduced, such that the maximum demand for this example is 160 plf times one-half the distance in feet between the braced wall ends. Where a top plate butt joint occurs within the length of a braced panel the sheathing nailing will also
aid in providing a splice. However, the code does not permit using sheathing as a method of providing a collector splice, therefore wherever a top plate butt joint occurs it should be provided with a positive connection between the two pieces (2001 CBC Sec. 2315.5.2)

A splice connection for a 2,773 pound demand could to be made with bolts or nails. A bolted connection could be provided by installing a $4-1 / 2$ " bolts vertically through a single $2 x$ top plate on each side of the butt joint, using a 16 inch long $1 / 4$ inch thick plate with bolts located 4 inches minimum from the butt joint and spaced 2.5 inches on center. An alternative splice could be made with an 18 gage strap nailed into the vertical face of the top plate having a total of 36-16d sinker nails. To prevent splitting, nails should be staggered and spaced not less than 1$1 / 2$ inches apart. Commercially available straps with the necessary capacity would require that blocking be installed below the existing plate to allow for a second row of nails. The blocking would also need to be attached to the top plate with 16 - 10d common nails along the length of the strap.

For the 36 foot long transverse wall, the maximum collector force is 267 plf for the Case 3 A (3000 sq . ft .) house, and its maximum length is ($30^{\prime}-21.33^{\prime}$) / $2=4.33$ feet, therefore the force is 1,157 pounds. Along the transverse walls, the parallel end joist should be connected to the top plate as described above with L70 or equivalent angles, therefore a continuous joist should be able to act as the splice member for a single top plate IF the end butt joint of the top plate and end joint of the joist are offset, and the quantity of L70 angles on each side can provide the needed splice capacity. Where end joints in both the joist and a single top plate occur in close proximity, an additional splice connection of the top plate should be provided.

Conclusions about splices for single top plates of cripple walls.

The actual force at a splice of a single top plate in a cripple wall can vary greatly depending on the location of the splice with respect to the layout of the bracing panels along the wall. The code's prescriptive double top plate splice for conventional construction provides a seismic tension capacity of $\mathbf{1 , 5 0 0}$ pounds and therefore a retrofit code should likely prescribe a similar capacity connection. This would most easily be provided by an 30 inch long 18 gage strap with 22 - 10d full length nails to provide that capacity, such as a Simpson LSTA or MSTA, nailed to the vertical face of the top plate.

Overturning Considerations for Two-Story Buildings

The overturning calculations for each Case assume a lateral force within each braced panel segment that is directly proportional to its length, as a fraction of the overall length of bracing provided. For example if the calculated lateral load to a wall line is 7,600 pounds and the total bracing length provided is 20 feet, each 8 foot long panel section of bracing has a lateral load of $(7,600 / 20) \times 8=3,040$ pounds.

Dead load resistance to overturning is based on the unit weights for the various floor, roof and wall assembles assumed for each Case, and the tributary area supported by the cripple wall. For roof loads, no roof overhang is assumed. For the longitudinal walls the width of roof tributary to the exterior walls is assumed to be one-quarter of the rafter span to the ridge based on a purlin being present at the halfway point between the exterior wall and the ridge line. The width of first floor tributary to the longitudinal walls is 4 feet, based on an 8 -foot span of floor joists to the first interior line of girders. The width of the second floor tributary to the longitudinal walls is $7^{\prime}-6^{\prime \prime}$ based on one-half of the span to the center of the 30 foot wide buildings. Where an interior first story bearing wall is closer to the exterior wall than the center of the building width, this assumption will overestimate tributary weight from the second floor, but the second floor weight contribution is only 21% of the total resistance for Cases 3A and 3B and reduces to only 15% in Case 3D. Typically, the wall length resisting overturning is assumed to be 2 feet longer than the length of the braced wall panel. For example, a 4 -foot long braced panel is assumed to engage $\mathbf{6}$ feet of tributary wall length for overturning resistance.

Because each individual braced wall length must be at least twice the cripple wall height, a maximum 4-foot height wall requires an 8 -foot minimum bracing panel length. This requirement intends to reduce the uplift forces imposed by overturning. However, based on the calculations, net uplift still occurs along the transverse gable end walls, but uplift does not occur along the longitudinal walls for any of the two-story conditions.

Conclusions about uplift restraint for cripple walls of Two-story house:

For 4"-0" tall walls having 8 '-0" long braced panels using 15/32" sheathing with 8d @ 4" edge nailing, net uplift forces ranging from 815 to 540 pounds (ASD) are calculated to occur along gable end walls for Cases 3A and 3B. In Cases 3C and 3D along gable end walls, the range is 160 to zero. For these fairly small uplift forces, the use of foundation sill plate anchor bolts with plate washers could be utilized as restraint, based on the following.

For example a $1 / 2$ " diameter Kwik Bolt with $3-1 / 2$ " embed and $3-1 / 2$ " edge distance (20% reduction) has a tension capacity without special inspection of 700 pounds in 2000 psi concrete. Wedge-All anchors have smaller values of 532 pounds for $1 / 2^{\prime \prime}$ diameter without special inspection and assuming a $3-1 / 2$ inch edge distance in 2000 psi concrete. The minimum 3-1/2 inch edge distance will require placing the bolts approximately 1 inch from the centerline of a 2×6 nominal sill plate. This would preclude the use of a flush cut sill method because the bolt would be too close to the edge of the cut face of the sill plate. A threaded rod installed with epoxy would be an alternative where an edge distance less than $3-1 / 2$ inches is used.

For uplifts between zero and 550 pounds, a single expansion anchor bolt with plate washer could be located within 4 inches of the end studs of each braced panel segment. Plate washers in this case should be wider and thicker than the current minimum $2 \times 2 \times 3 / 16$ inch plate washer to provide uplift resistance. On a 2×6 nominal sill plate with the anchor bolt offset from the center of the sill plate by 1 inch a $5 \times 5 \times 3 / 8$ inch washer with a 2 inch long diagonal slot is recommended.

For uplifts between 550 and 1000 pounds, a pair of expansion anchor bolts with plate washers could be used to resist this uplift. Each bolt could be located within 4 inches of the end studs of each braced panel segment. Alternatively, an FJA / FSA type strap nailed to the end stud and bolted into the face of the foundation stem wall could be used for forces up to $\mathbf{1 0 0 0}$ pounds.

DRAFT TABLE A-1

BRACING, BOLTING AND SHEAR TRANSFER REQUIREMENTS FOR ONE-STORY HOUSES Using 15/32-inch rated plywood sheathing with 8d @ 4" o.c. 10d @ 4" nailing is not used in order to reduce overturning demands

Total Floor Area (sq.ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \end{gathered}$	Bracing Length 8d @ 4"nailing	No. of Sill Bolts along each wall line		No. of L70 or A35 angles along each wall line	Shear Transfer Force along each wall (plf)	
			5/8" \varnothing	$1 / 2, \varnothing$		Trans	Long
1,200 ${ }^{\text {A }}$	3A	12'-0"	4	6	10	146	110
1,200 ${ }^{\text {A }}$	3B	14'-8"	5	7	13	184	138
1,200 ${ }^{\text {A }}$	3C	17'-4"	6	8	15	215	161
1,200 ${ }^{\text {A }}$	3D	20'-0"	7	9	17	243	182
1,500 ${ }^{\text {B }}$	3A	14'-8"	5	7	12	172	103
1,500 ${ }^{\text {B }}$	3B	17'-4"	6	8	15	215	129
1,500 ${ }^{\text {B }}$	3C	20'-0"	7	10	17	250	150
$1,500{ }^{\text {B }}$	3D	22'-8"	8	11	19	285	171
2,000 ${ }^{\text {C }}$	3A	17'-4"	6	8	15	179	115
2,000 ${ }^{\text {c }}$	3B	21'-4"	7	10	18	223	143
2,000 ${ }^{\text {c }}$	3C	25'-4"	8	12	21	257	165
$2,000{ }^{\text {c }}$	3D	28'-0"	9	13	24	292	188

${ }^{\mathrm{A}}$ Footprint is 30 feet x 40 feet
${ }^{\text {B }}$ Footprint is 30 feet x 50 feet
${ }^{\text {C }}$ Footprint is 36 feet x 56 feet

DRAFT TABLE A-2

BRACING, BOLTING AND SHEAR TRANSFER REQUIREMENTS FOR TWO-STORY HOUSES Using 15/32-inch rated sheathing with either 8d or 10d @ 4" o.c.
10d @ 4" is used where 8d nailing results in too little capacity OR
when calculated length exceeds 85% of the total assumed maximum length of the wall

Total Floor Area (sq.ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \end{gathered}$	Bracing Length8d @ 4"\|10d @ 4nailing \mid nailing		No. of Sill Bolts along each wall line		No. of L70 or A35 angles along each wall line	Shear Transfer Force along each wall (plf)	
				$5 / 8 " \varnothing$	$1 / 2 " \varnothing$		Trans	Long
1,800 ${ }^{\text {A }}$	3A	14'-8'	N/A	5	7	13	185	185
1,800 ${ }^{\text {A }}$	3B	18'-8'	N/A	7	9	16	236	236
1,800 ${ }^{\text {A }}$	3C	22'-8'	N/A	8	11	19	282	282
1,800 ${ }^{\text {A }}$	3D	24'-0"	N/A	8	12	21	303	303
2,400 ${ }^{\text {B }}$	3A	18'-8'	N/A	6	9	15	226	169
$2,400{ }^{\text {B }}$	3B	22'-8'	N/A	8	11	20	287	215
2,400 ${ }^{\text {B }}$	3C	26'-8'	22'-8"	9	13	23	340	255
$2,400{ }^{\text {B }}$	3D	29'-4"	24'-0"	10	14	25	368	276
$3,000^{\text {c }}$	3A	21'-4"	N/A	7	10	18	267	160
$3,000{ }^{\text {c }}$	3B	26'-8'	22'-8"	9	13	23	338	203
$3,000{ }^{\text {c }}$	3C	N/A	26'-8"	11	15	27	398	239
$3,000^{\text {c }}$	3D	N/A	28'-8"	12	16	29	432	259

${ }^{\text {A }}$ Footprint is 30 feet x 30 feet
${ }^{\text {B }}$ Footprint is 30 feet x 40 feet
${ }^{\text {C }}$ Footprint is 30 feet x 50 feet

Locations and quantity of extra foundation sill bolts needed for uplift adjacent to braced panel end studs based on the overturning calculations following each Case and building size

DRAFT TABLE B-1

BRACED WALL LENGTHS REQUIRING EXTRA SILL BOLTS FOR UPLIFT AT ONE-STORY USING 15/32" RATED SHEATHING w/ 8d @ 4" o.c. EDGE NAILING ONLY 2 Bolts or FJA for net uplift $\geq 550 \leq 1000$ pounds 1 Bolt for net uplift < 550 pounds

Total Floor Area	$\begin{gathered} \hline \text { Case } \\ \text { ID } \end{gathered}$	CrippleWallHeight	_Number of Extra Sill Bolts Needed for Uplift at Ends of Braced Panel _									
			4'-0"		8'-0"		12'-0"		16'0"		20'-0"	
			Trans	Long								
1,200	3 A	2'-0"	1	1	1	0	1	0	N/A	N/A	N/A	N/A
1,200	3A	4'-0"	N/A	N/A	2	1	2	1	N/A	N/A	N/A	N/A
1,200	3B	2'-0"	1	1	1	0	0	0	0	0	N/A	N/A
1,200	3B	4'-0"	N/A	N/A	2	1	2	0	$1^{\text {A }}$	$0^{\text {A }}$	N/A	N/A
1,200	3C	2'-0"	1	0	0	0	0	0	0	0	N/A	N/A
1,200	3C	4'-0	N/A	N/A	1	0	1	0	0	0	N/A	N/A
1,200	3D	2'-0"	1	0	0	0	0	0	0	0	0	0
1,200	3D	4'-0"	N/A	N/A	1	0	0	0	0	0	0	0
1,500	3A	2'-0"	1	1	1	0	0	0	$0^{\text {A }}$	$0^{\text {A }}$	N/A	N/A

1,500	3A	4'-0"	N/A	N/A	2	1	2	1	$1^{\text {A }}$	$0^{\text {A }}$	N/A	N/A
1,500	3B	2'-0"	1	1	1	0	0	0	0	0	$0^{\text {B }}$	$0^{\text {B }}$
1,500	3B	4'-0"	N/A	N/A	2	1	2	0	1	0	$1^{\text {B }}$	0^{B}
1,500	3C	2'-0"	1	0	0	0	0	0	0	0	0	0
1,500	3C	4'-0"	N/A	N/A	1	0	1	0	0	0	0	0
1,500	3D	2'-0"	1	0	0	0	0	0	0	0	0	0
1,500	3D	4'-0"	N/A	N/A	1	0	0	0	0	0	0	0
2,000	3A	2'-0"	1	1	1	0	1	0	0	0	$0^{\text {B }}$	0^{B}
2,000	3A	4'-0"	N/A	N/A	2	1	2	1	2	0	$1^{\text {B }}$	0^{B}
2,000	3B	2'-0"	1	1	1	0	0	0	0	0	0	0
2,000	3B	4'-0"	N/A	N/A	2	1	2	0	1	0	$1^{\text {C }}$	0
2,000	3C	2'-0"	1	0	0	0	0	0	0	0	0	0
2,000	3C	4-0"	N/A	N/A	1	0	0	0	0	0	0	0
2,000	3D	2'-0"	0	0	0	0	0	0	0	0	0	0
2,000	3D	4'-0"	N/A	N/A	1	0	1	0	0	0	0	0

${ }^{\text {A }}$ Maximum braced length considered is $14^{\prime}-8$ "
${ }^{\mathrm{B}}$ Maximum braced length considered is $17{ }^{\prime}-4$ "
${ }^{\text {C }}$ One extra bolt also required at maximum considered braced length of 21'-4"

Locations and quantity of extra foundation sill bolts needed for uplift adjacent to braced panel end studs based on the overturning calculations following each Case and building size

DRAFT TABLE B-2

BRACED WALL LENGTHS REQUIRING EXTRA SILL BOLTS FOR UPLIFT AT TWO-STORY 15/32" RATED SHEATHING w/ 8d @ 4" o.c. EDGE NAILING ${ }^{\text {A }}$
2 Bolts or FJA for net uplift $\geq \mathbf{5 5 0} \leq \mathbf{1 0 0 0}$ pounds
1 Bolt for net uplift < 550 pounds

Total Floor Area	$\begin{gathered} \text { Case } \\ \text { ID } \end{gathered}$	Cripple Wall Height	Number of Extra Sill Bolts Needed for Uplift at Ends of Braced Panel_											
			$\frac{4^{\prime}-0^{\prime \prime}}{\text { Trans } \mid \text { Long }}$		$\begin{aligned} & \hline \frac{8^{\prime}-0^{\prime \prime}}{\mid \text { Trans \| Long }} \\ & \hline \end{aligned}$		$\frac{\mid 12^{\prime}-0^{\prime \prime}}{\mid \text { Trans } \mid \text { Long }}$		16'-0"		20'-0"			
					\| Trans	Long			\| Trans	Long				
1,800	3A	2'-0"	1	0			0	0	0	0	$0^{\text {B }}$	0^{B}	N/A	N/A
1,800	3A	4'-0"	N/A	N/A	2	0	1	0	$1^{\text {B }}$	0^{B}	N/A	N/A		
1,800	3B	2'0"	1	0	0	0	0	0	0	0	N/A	N/A		
1,800	3B	4'-0"	N/A	N/A	1	0	1	0	0	0	N/A	N/A		
1,800	3C	2'-0"	0	0	0	0	0	0	0	0	0	0		
1,800	3 C	4'-0	N/A	N/A	0	0	0	0	0	0	0	0		
1,800	3D	2'-0"	0	0	0	0	0	0	0	0	0	0		
1,800	3D	4'-0"	N/A	N/A	0	0	0	0	0	0	0	0		
2,400	3A	2'-0"	1	0	0	0	0	0	0	0	N/A	N/A		
2,400	3A	4'-0"	N/A	N/A	2	0	1	0	0	0	N/A	N/A		
2,400	3B	2'-0"	1	0	0	0	0	0	0	0	0	0		

2,400	3B	4'-0"	N/A	N/A	1	0	1	0	0	0	0	0
2,400	$3 C^{\text {A }}$	2'-0"	0	0	0	0	0	0	0	0	0	0
2,400	$3 C^{\text {A }}$	4'-0"	N/A	N/A	1	0	0	0	0	0	0	0
2,400	$3 \mathrm{D}^{\text {A }}$	2'0"	0	0	0	0	0	0	0	0	0	0
2,400	$3 \mathrm{D}^{\text {A }}$	4'-0"	N/A	N/A	1	0	0	0	0	0	0	0
3,000	3A	2'-0"	1	0	0	0	0	0	0	0	0	0
3,000	3A	4'-0"	N/A	N/A	2	0	1	0	0	0	0	0
3,000	$3 B^{\text {A }}$	2'0"	1	0	0	0	0	0	0	0	0	0
3,000	$3 B^{\text {A }}$	4'-0"	N/A	N/A	2	0	1	0	0	0	0	0
3,000	$3 C^{\text {A }}$	2'-0"	0	0	0	0	0	0	0	0	0	0
3,000	$3 C^{\text {A }}$	4-0"	N/A	N/A	1	0	0	0	0	0	0	0
3,000	$3 \mathrm{D}^{\text {A }}$	2'0"	0	0	0	0	0	0	0	0	0	0
3,000	$3 \mathrm{D}^{\text {A }}$	4'-0"	N/A	N/A	1	0	0	0	0	0	0	0

${ }^{\text {A }}$ Specific Cases and sizes using 10d @ 4" edge nailing are indicated by this footnote
${ }^{\text {B }}$ Maximum braced length considered is $14{ }^{\prime}-8{ }^{\prime \prime}$

DRAFT TABLE C-1
High Capacity Single Segment Length Bracing for 1,200 Sq. Ft. One-Story Buildings Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing

Total Floor Area (sq. ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \\ \hline \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
1,200	3A	6'-8"	2'-0"	2 bolts	w/ PW	931	588
		6'-8'	2'-8"	PHD		1,354	1,010
		6'-8"	3'-4"	PHD		1,777	1,433
		6'-8"	4'-0"	PH		2,200	1,856
1,200	3B	9'-4"	2'-0'	2 bolts w/ PW	None	583	34
		9'-4"	2'-8"	2 bolts w/PW	1 bolt w/PW	957	408
		9'-4"	3'-4"	PHD2	2 bolts w/PW	1,330	781
		9'-4"	4'-0"	PHD		1,703	1,154
1,200	3C	10'-8"	2'-0"	1 bolt w/PW	None	83	0
		10'-8"	2'-8"	1 bolt w/PW	None	435	0
		10'-8"	3'-4"	2 bolts w/PW	1 bolt w/PW	787	226
		10'-8"	4'-0"	PHD2	2 bolts w/PW	1,139	578
1,200	3D	$12^{\prime}-0$ "	2'-0"	None		0	0
		$12^{\prime}-0$ "	2'-8"	1 bolt w/PW	None	280	0
		$12^{\prime}-0$ "	3'-4"	2 bolts W/ PW	None	628	0
		$12^{\prime}-0$ "	4'-0"	2 bolts w/PW	1 bolt w/PW	976	111

High Capacity Single Segment Length Bracing for 1,500 Sq. Ft. One-Story Buildings
Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing

Total Floor Area (sq. ft.)	Case ID	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
1,500	3A	8'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	847	450
		8'-0"	2'-8"	PHD2	2 bolts w/PW	1,258	862
		8'-0"	3'-4"		D2	1,670	1,273
		8'-0''	4'-0"'			2,082	1,685
1,500	3B	10'-8"	2'-0'	1 bolt w/ PW	None	542	0
		10'-8"	2'-8"	2 bolts w/PW	1 bolt w/PW	923	309
		10'-8"	3'-4"	PHD2	2 bolts w/PW	1,303	690
		10'-8"	4'-0"		D2	1,684	1,070
1,500	3C	12'-0"	2'-0"		ne	7	0
		12'-0''	2'-8"	1 bolt w/PW	None	368	0
		12'-0'	3'-4"	2 bolts w/PW	1 bolt w/PW	729	109
		12'-0"	4'-0"	PHD2	1 bolt w/PW	1,089	470
1,500	3D	13'-4"	2'-0"	None		0	0
		13'-4"	2'-8"'	1 bolt w/PW	None	240	0
		13'-4"	3'-4"	2 bolts w/ PW	None	605	0
		13'-4"	4'-0"'	2 bolts w/PW	None	970	22

DRAFT TABLE C-3

High Capacity Single Segment Length Bracing for 2,000 Sq. Ft. One-Story Buildings
Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing

Total Floor Area (sq. ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
2,000	3A	10'-8"	2'-0"	2 bolts w/PW \|	1 bolt w/PW	649	52
		10'-8"	2'-8"	PHD2	\| 1 bolt w/PW	1,029	404
		10'-8"	3'-4"	PHD2	\| 2 bolts w/PW	1,409	755
		10'-8"	4'-0"	PHD2		1,789	1,107
2,000	3B	12'-0"	$2^{\prime}-0$ '	2 bolts w/ PW	None	600	0
		12'-0"	2'-8"	PHD2	11 bolt w/PW	1,020	210
		12 '-0"	3'-4"		2 bolts w/PW	1,442	631
		12'-0"	4'-0"	PHD2		1,863	1,052
2,000	3C	$14^{\prime}-8^{\prime \prime}$	2'-0"	None		0	0
		$14^{\prime}-8$ "	2'-8"	1 bolt w/PW	None	132	0
		14'-8"	3'-4"	1 bolt w/PW	None	485	0
		14'-8"	4'-0"	2 bolts w/PW	None	838	0
2,000	3D	$16^{\prime}-0^{\prime \prime}$	2'-0"	No		0	0
		16'-0"	2'-8"	1 bolt w/PW	None	42	0
		16'-0"	3'-4"	1 bolt w/ PW	None	411	0
		$16^{\prime}-0^{\prime \prime}$	4'-0"	2 bolts W/PW	None	779	0

DRAFT TABLE C-4
High Capacity Single Segment Length Bracing for $\mathbf{1 , 8 0 0}$ Sq. Ft. Two-Story Buildings Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing

Total Floor Area (sq. ft.)	$\begin{gathered} \text { Case } \\ \text { ID } \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
1,800	3A	9'-4"	2'-0"	1 bolt w/PW	None	328	0
		9'-4"	2'-8"	2 bolts w/PW	None	703	0
		9'-4"	3'-4"	PHD2	1 bolt w/PW	1,077	314
		9'-4"	4'-0"	PHD2	2 bolts w/PW	1,452	689
1,800	3B	10'-8"	2'-0'	1 bolt w/PW	None	159	0
		$10^{\prime}-8$ "	2'-8"	1 bolt w/PW	None	579	0
		10'-8"	3'-4"	2 bolts w/PW	None	998	0
		10'-8"	4'-0"	PHD2	1 bolt w/PW	1,417	375
1,800	3C	13'-4"	2'-0"	None		0	0
		13'-4"	2'-8"	None		0	0
		13'-4"	3'-4"	None		0	0
		13'-4"	4'-0"	None		0	0
1,800	3D	14'-8"	2'-0"	None		0	0
		14'-8"	2'-8"	None		0	0
		14'-8"	3'-4"	None		0	0
		14'-8"	4'-0"	None		0	0

DRAFT TABLE C-5

High Capacity Single Segment Length Bracing for 2,400 Sq. Ft. Two-Story Buildings Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing

Total Floor Area (sq. ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \\ \hline \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
	3A	10'-8'	2'-0"	1 bolt w/PW	None	310	0
		10'-8"	2'-8"	2 bolts w/PW	None	710	0
		10'-8"	3'-4"	PHD2	1 bolt w/PW	1,110	257
		10'-8"	4'-0"	PHD2	2 bolts w/PW	1,510	657
2,400	3B	13'-4"	2'-0'	None		0	0
		13'-4"	2'-8"	1 bolt w/PW	None	281	0
		13'-4"	3'-4"	2 bolts w/PW	None	684	0
		13'-4"	4'-0"	PHD2	None	1,087	0
2,400	3C	16'-0"	2'-0"	None		0	0
		$16^{\prime}-0$ "	2'-8"	None		0	0
		$16^{\prime}-0$ "	3'-4"	None		0	0
		$16^{\prime}-0$ "	4'-0"	None		0	0
2,400	3D	17'-4"	2'-0"	None		0	0
		17'-4"	2'-8"	None		0	0
		17'-4"	3'-4"	None		0	0
		17'-4"	4'-0"	None		0	0

DRAFT TABLE C-6

High Capacity Single Segment Length Bracing for $\mathbf{3 , 0 0 0}$ Sq. Ft. Two-Story Buildings Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing

Total Floor	Case	Bracing	Cripple Wall	Tie-down Required at Each	Tie-down Force (lbs.)	
Area (sq. ft.)	ID	Length	Height	End of Braced Panel	Trans \|	Long

3,000	3A	12'-0"	2'-0"	1 bolt w/PW	None	273	0
		12'-0"	2'-8"	2 bolts w/PW	None	692	0
		12'-0"	3'-4"	PHD2	1 bolt w/PW	1,112	169
		12'-0"	4'-0"	PHD2	2 bolts w/PW	1,531	588
3,000	3B	16'-0"	2'-0'	None		0	0
		16'-0"	2'-8"	None		0	0
		$16^{\prime}-0^{\prime \prime}$	3'-4"	1 bolt w/PW	None	390	0
		16'-0"	4'-0"	2 bolts w/PW	None	780	0
3,000	3C	18'-8"	2'-0"	None		0	0
		18'-8"	2'-8"	None		0	0
		18'-8"	3'-4"	None		0	0
		18'-8"	4'-0"	None		0	0
3,000	3D	20'-0"	2'-0"	None		0	0
		20'-0"	2'-8"	None		0	0
		20'-0"	3'-4"	None		0	0
		20'-0"	4'-0"	None		0	0

DRAFT TABLE D-1

High Capacity Multi-Segment Bracing for 1,200 Sq. Ft. One-Story Buildings
Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing
All panels lengths used in this table comply with a minimum 1:2 height-to-width ratio

Total Floor Area (sq. ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \\ \hline \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel	Tie-down Force (lbs.)	
					Trans	Long
1,200	3A	2 @ 4'-0"	2'-0"	2 bolts w/PW \| 2 bolts w/PW	830	592
1,200	3A	8'-0"min	>2'-0"	See Table C-1		
1,200	3B	1 @ 4'-0"	2'-0"	2 bolts w/PW \| 2 bolts w/PW	865	574
		1 @ 5'-4"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	794	439
1,200	3B	2 @ 5’-4"	2'-8"	2 bolts w/PW \| 2 bolts w/PW	884	623
1,200	3B	9'-4"min	>2'-8"	See Table C-1		
1,200	3C	1 @ 4'-0"	2'-0"	2 bolts w/PW \| 2 bolts w/PW	875	610
		1 @ 6'-8"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	638	268
1,200	3C	2 @ 5'-4"	2'-8"	PHD2 12 bolts w/PW	1,197	872
1,200	3C	2 @ 6-8"	3'-4"	PHD2 12 bolts w/PW	1,037	654
1,200	3C	10'-8"min	>3'-4"	See Table C-1		
1,200	3D	1 @ 4'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	665	294
		1 @ 8'-0"	2'-0"	1 bolt w/PW \| None	298	0
1,200	3D	1 @ 5'-4"	2'-8"	2 bolts w/PW \| 1 bolt w/PW	918	464
		1 @ 6'-8"	2'-8"	2 bolts w/PW \| 1 bolt w/PW	790	254
1,200	3D	2 @ 6'-8"	3'-4"	PHD2 12 bolts w/PW	1,160	624
1,200	3D	12'-0"min	>3'-4"	See Table C-1		

DRAFT TABLE D-2

High Capacity Multi-Segment Bracing for 1,500 Sq. Ft. One-Story Buildings
 Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing All panels lengths used in this table comply with a minimum 1:2 height-to-width ratio

Total Floor	Case	Bracing	Cripple Wall	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
Area (sq. ft.)	ID	Length	Height			Trans	Long
1,500	3A	2 @ 4'-0"	2'-0"	PHD2	2 bolts w/PW	1,024	785
1,500	3A	2 @ 5'-4"	2'-8"	2 bolts w/PW	2 bolts w/PW	951	660
1,500	3A	1 @ 8'-0"	>2'-8"	See Ta	ble C-2		

1,500	3B	1 @ 4’-0"	2'-0"	2 bolts w/PW	2 bolts w/PW	894	603
		1 @ 6'-8"	2'-0"	2 bolts w/PW	1 bolt w/PW	753	333
1,500	3B	2 @ 5’-4"	2'-8"	PHD2	2 bolts w/PW	1,214	859
1,500	3B	2 @ 6'-8"	3'-4"	PHD2	2 bolts w/PW	1,125	706
1,500	3B	10'-8"min	>3'-4"	See T	le C-2		

1,500	3C	3 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	719	453
1,500	3C	1 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	719	453
		1 @ 8'-0"	2'-0"	1 bolt w/PW	None	363	0
1,500	3C	1@ 5'-4"	2'-8"	2 bolts w/PW	2 bolts w/PW	988	663
		1 @ 6'-8"	2'-8"	2 bolts w/PW	1 bolt w/PW	864	480
1,500	3C	2 @ 6'-8"	3'-4"	PHD2	2 bolts w/PW	1,037	564
1,500	3C	12'-0"min	>3'-4"	See Tab	le C-2		

1,500	3D	1 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	731	433
		1 @ 9'-4"	2'-0"	1 bolt w/PW	None	242	0
1,500	3D	2 @ 4’-0"	2'-0'	2 bolts w/PW	1 bolt w/PW	731	433
		1 @ 5’-4"	2'-0"	2 bolts w/PW	1 bolt w/PW	609	245
1,500	3D	3 @ 5’-4"	2'-8"	2 bolts w/PW	1 bolt w/PW	721	268
1,500	3D	2 @ 6'-8"	3'-4"	PHD2	2 bolts w/PW	1,270	840
1,500	3D	13'-4"min	$>3^{\prime}-4{ }^{\prime \prime}$	See Ta	le C-2		

DRAFT TABLE D-3

High Capacity Multi-Segment Bracing for 2,000 Sq. Ft. One-Story Buildings
 Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing All panels lengths used in this table comply with a minimum 1:2 height-to-width ratio

Total Floor Area (sq. ft.)	$\begin{gathered} \hline \text { Case } \\ \text { ID } \\ \hline \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel	Tie-down Force (lbs.)	
					Trans	Long
2,000	3A	3 @ 4'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	809	527
2,000	3A	1 @ 4'-0"	2'-0"	2 bolts w/PW \| 2 bolts w/PW	944	661
		1 @ 6'-8"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	826	417
2,000	3A	2 @ 5'-4"	2'-8"	PHD2 12 bolts w/PW	1,274	929
2,000	3A	2 @ 6'-8"	3'-4"	PHD2 12 bolts w/PW	1,197	789
2,000	3A	10'-8"min	>3'-4"	See Table C-3		
2,000	3B	3 @ 4'-0"	2'-0"	PHD2 2 bolts w/PW	1,022	675
2,000	3B	1@4'-0"	2'-0"	PHD2 2 bolts w/PW	1,022	675
		1 @ 8'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	811	232
2,000	3B	1 @ 4'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	778	431
		2 @ 5'-4"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	708	283
2,000	3B	3 @ 5'-4"	2'-8"	2 bolts w/PW \| 1 bolt w/PW	938	514
2,000	3B	2 @ 6'-8"	3'-4"	PHD2	1,519	1,017
2,000	3B	12'-0"min	>3'-4"	See Table C-3		
2,000	3C	4 @ 4'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	623	300
2,000	3C	1 @ 4'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	728	405
		2 @ 5'-4"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	609	215
2,000	3C	1@4'-0"	2'-0"	2 bolts w/PW \| 1 bolt w/PW	623	300
		1 @ 5'-4"	2'-0"	1 bolt w/PW \| 1 bolt w/PW	504	110
		1 @ 6'-8"	2'-0"	1 bolt w/ PW \| None	385	0
2,000	3C	2 @ 5'-4"	2'-8"	2 bolts w/PW \| 1 bolt w/PW	741	347
		1 @ 6'-8"	2'-8"	2 bolts w/PW \| 1 bolt w/PW	617	152
2,000	3C	2 @ 6'-8"	3'-4"	PHD2	1,471	1,006
2,000	3C	14'-8"min	>3'-4"	See Table C-3		

2,000	3D	4 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	774	322
2,000	3D	1 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	774	322
		1 @ 5'-4"	2'-0"	2 bolts w/PW	1 bolt w/PW	652	100
		1 @ 6'-8"	2'-0"	1 bolt w/ PW	None	529	0
2,000	3D	3 @ 5'-4"	2'-8"	PHD2	1 bolt w/PW	1,063	511
2,000	3D	2 @ 5’-4"	2'-8"	2 bolts w/PW	1 bolt w/PW	927	375
		1 @ 6'-8"	2'-8"	2 bolts w/PW	1 bolt w/PW	800	147
2,000	3D	3 @ 6'-8"	3'-4"	2 bolts w/PW	1 bolt w/PW	901	248
2,000	3D	2 @ 8’-0"	4'-0"	1 bolt w/ PW	None	433	0
2,000	3D	16'-0"min		See Ta	e C-3		

DRAFT TABLE D-4

High Capacity Multi-Segment Bracing for 1,800 Sq. Ft. Two-Story Buildings
 Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing All panels lengths used in this table comply with a minimum 1:2 height-to-width ratio

Total Floor Area (sq. ft.)	$\begin{gathered} \text { Case } \\ \text { ID } \\ \hline \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
	3A	1 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	732	327
		1@ 5'-4"	2'-0"	2 bolts w/PW \|	1 bolt w/PW	631	137
1,800	3A	2 @ 5’-4"	2'-8"	2 bolts w/PW \|	1 bolt w/PW	815	321
1,800	3A	9'-4" min	>2'-8"	See Table C-4			
1,800	3B	1 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	773	280
		1 @ 6'-8"	2'-0"	1 bolt w/PW	None	528	0
1,800	3B	2 @ 5'-4"	2'-8"	PHD2	11 bolt w/PW	1,079	476
1,800	3B	2 @ 6'-8"	3'-4"	2 bolts w/PW	1 bolt w/PW	939	226
1,800	3B	10'-8"min	>3'-4"	See Table C-4			
1,800	3C	2 @ 4'-0"	2'-0"	1 bolt w/PW	None	348	0
		1@ 5'-4"	2'-0"	1 bolt w/PW	None	143	0
1,800	3C	3 @ 5'-4"	2'-8"	1 bolt w/PW	None	255	0
1,800	3C	2 @ 6'-8"	3'-4"	2 bolts w/PW	None	714	38
1,800	3C	2 @ 8'-0"	4'-0"	1 bolt w/PW	None	458	0
1,800	3C	13'-4"min		See Table C-4			
1,800	3D	4 @ 4'-0"	2'-0"	1 bolt w/PW	None	201	0
1,800	3D	1 @ 4'-0"	2'-0"	1 bolt w/PW	None	304	0
		2 @ 5'-4"	2'-0"	1 bolt w/PW	None	96	0
1,800	3D	3 @ 5'-4"	2'-8"	1 bolt w/PW	None	342	0
1,800	3D	1 @ 6'-8"	3'-4"	2 bolts w/PW	None	645	0
		1 @ 8'-0"	3'-4"	1 bolt w/PW	None	426	0
1,800	3D	2 @ 8'-0"	4'-0"	2 bolts w/PW	None	593	0
1,800	3D	14'-8"min		See Tab	le C-4		

DRAFT TABLE D-5

High Capacity Multi-Segment Bracing for 2,400 Sq. Ft. Two-Story Buildings
Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing All panels lengths used in this table comply with a minimum 1:2 height-to-width ratio

Total Floor Area (sq. ft.)	$\begin{gathered} \text { Case } \\ \text { ID } \end{gathered}$	Bracing Length	Cripple Wall Height	Tie-down Required at Each End of Braced Panel		Tie-down Force (lbs.)	
						Trans	Long
2,400	3A	3 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	674	269
2,400	3A	1 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	815	410
		1 @ 6'-8"	2'-0"	2 bolts w/PW	None	613	29
2,400	3A	2 @ 5'-4"	2'-8"	PHD2	\| 2 bolts w/PW	1,123	629
2,400	3A	2 @ 6'-8"	3'-4"	PHD2	1 bolt w/PW	1,004	421
2,400	3A	10'-8"min	>3'-4"	See Tab	ble C-5		
2,400	3B	4 @ 4’-0"	2'-0"	1 bolt W/PW	None	523	29
2,400	3B	2 @ 4'-0"	2'-0"	2 bolts w/PW	1 bolt w/PW	738	245
		1@ 5'-4"	2'-0"	2 bolts w/PW \|	None	615	12
2,400	3B	3 @ 5'-4"	2'-8"	2 bolts w/PW	1 bolt w/PW	746	142
2,400	3B	2 @ 6'-8"	3'-4"	PHD2	12 bolts w/PW	1,322	999
2,400	3B	2 @ 8'-0"	4'-0"	PHD2	1 bolt w/PW	1,176	354
2,400	3B	13'-4"min		See Tab	ble C-5		
2,400	3C	4 @ 4'-0"	2'-0"	1 bolt w/PW	None	354	0
2,400	3C	1 @ 4'-0"	2'-0"	1 bolt w/PW	None	354	0
		1@ 5'-4"	2'-0"	1 bolt w/PW	None	150	0
		1 @ 6'-8"	2'-0"	None		0	0
2,400	3C	3 @ 5'-4"	2'-8"	1 bolt w/PW	None	545	0
2,400	3C	3 @ 6'-8"	3'-4"	1 bolt w/PW	None	300	0
2,400	3C	2 @ 8'-0"	4'-0"	2 bolts w/PW	1 bolt w/PW	894	113
2,400	3C	16'-0"min		See Tab	ble C-5		
2,400	3D	5 @ 4'-0"	2'-0"	1 bolt w/PW	None	167	0
2,400	3D	1 @ 4'-0"	2'-0"	1 bolt w/PW	None	336	0
		1@ 5'-4"	2'-0"	1 bolt w/PW	None	128	0
		1 @ 8'-0"	2'-0"	None		0	0
2,400	3D	1 @ 5'-4"	2'-8"	1 bolt w/PW	None	402	0
		2 @ 6'-8"	2'-8"	1 bolt w/PW	None	188	0

2,400	3D	3 @ 6'-8"	3'-4"	1 bolt w/PW	None	416	0
2,400	3D	1 @ 8’-0"	4'-0"	2 bolts w/PW	None	864	0
		1 @ 9'-4"	4'-0"	2 bolts w/PW	None	639	0
2,400	3D	17’-4"min		See Table C-5			

DRAFT TABLE D-6

High Capacity Multi-Segment Bracing for 3,000 Sq. Ft. Two-Story Buildings
Using 15/32" Structural I Plywood w/ 10d @ 3 inch o.c. edge nailing All panels lengths used in this table comply with a minimum 1:2 height-to-width ratio

3,000	3D	4 @ 5'-4"	2'-8"	1 bolt w/PW	None	444	0
3,000	3D	3 @ 5'-4"	2'-8"	1 bolt w/PW	None	349	0
		1 @ 6'-8"	2'-8"	1 bolt w/PW	None	136	0
3,000	3D	3 @ 6'-8"	3'-4"	2 bolts w/PW	None	736	0
3,000	3D	2 @ 6'-8"	3'-4"	2 bolts w/PW	None	600	0
		1 @ 8'-0"	3'-4"	1 bolt w/PW	None	382	0
3,000	3D	1 @ 8'-0"	4'-0"	2 bolts w/PW	None	908	0
		1 @ 12-0"	4'-0"	1 bolt w/PW	None	235	0
3,000	3D	20-0"min		See Table C-5			

